New Structure of CCR with an AOANN Threshold

In this paper, artificial neural network-based adaptive optimal threshold estimation for a two-dimensional optical code division multiple access conventional correlation receiver is proposed. A multilayer perceptron neural network with back-propagation learning algorithm is considered. This estimato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications 2021-01, Vol.42 (1), p.103-109
Hauptverfasser: Rabehi, Abdelhalim, Djebbari, Ali, Hafaifa, Ahmed, Souahlia, Abdelkerim, Taleb-Ahmed, Abdelmalik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, artificial neural network-based adaptive optimal threshold estimation for a two-dimensional optical code division multiple access conventional correlation receiver is proposed. A multilayer perceptron neural network with back-propagation learning algorithm is considered. This estimator uses the weight ( ) and the length ( ) of the code word, the number of active users ( ) and the signal to noise ratio as inputs to estimate the required optimal threshold. We have evaluated the proposed approach on a data set of 46,200 samples. We have found that it gives accurate results: 0.029 for the root mean square error, 0.37% for the relative root mean square error and 99.984% for the correlation coefficient (R), which reflects the efficiency of the proposed optimal threshold estimator.
ISSN:0173-4911
1943-0620
2191-6322
1943-0639
DOI:10.1515/joc-2018-0028