Spiro-configured dibenzosuberene compounds as deep-blue emitters for organic light-emitting diodes with a CIEy of 0.04
Deep blue electroluminescence is highly required for organic light-emitting diode (OLED) technology. However, designing fluorophores displaying adequate CIE coordinates and particularly a low CIEy is far from an easy task. We report in this work the synthesis, the physico-chemical properties and the...
Gespeichert in:
Veröffentlicht in: | Materials chemistry frontiers 2022-01, Vol.6 (13), p.1803-1813 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep blue electroluminescence is highly required for organic light-emitting diode (OLED) technology. However, designing fluorophores displaying adequate CIE coordinates and particularly a low CIEy is far from an easy task. We report in this work the synthesis, the physico-chemical properties and the application of deep blue emitters constructed using the dibenzosuberene (DBS) molecular fragment in OLEDs. Three emitters, SPA-DBS, SIA-DBS and SQPTZ-DBS, have been constructed following a similar molecular design strategy that is the spiro connection of an electron rich unit, namely N-phenylacridine (PA), indoloacridine (IA) or quinolinophenothiazine (QPTZ) to the DBS core. The PA, IA and QPTZ fragments are known to be efficient hole injecters due to their strong electron-rich character. Through a structure/property relationship study, we analyse the electrochemical, photophysical and thermal behaviours of these three emitters. When used as an emitter in an OLED, a deep-blue emission with CIE of (0.16, 0.04) is obtained with SPA-DBS, reaching an EQE of ca. 1% and a Von of 4 V. The CIEy coordinate of 0.04 appears to be particularly low and fits the NSTC, ITU and EBU standards. |
---|---|
ISSN: | 2052-1537 2052-1537 |
DOI: | 10.1039/d2qm00287f |