Interaction and co-assembly of optical and topological solitons

Solitons attract a great deal of interest in many fields, ranging from optics to fluid mechanics, cosmology, particle physics and condensed matter. However, solitons of these very different types rarely coexist and interact with each other. Here we develop a system that hosts optical solitons coexis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2022-06, Vol.16 (6), p.454-461
Hauptverfasser: Poy, Guilhem, Hess, Andrew J., Seracuse, Andrew J., Paul, Michael, Žumer, Slobodan, Smalyukh, Ivan I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solitons attract a great deal of interest in many fields, ranging from optics to fluid mechanics, cosmology, particle physics and condensed matter. However, solitons of these very different types rarely coexist and interact with each other. Here we develop a system that hosts optical solitons coexisting with topological solitonic structures localized in the molecular alignment field of a soft birefringent medium. We experimentally demonstrate and theoretically explain optomechanical interactions between such optical and topological solitons, mediated by the local transfer of momentum between light and matter and the nonlocal orientational elasticity of the liquid-crystal phase used in our system. We show that the delicate balance arising from these different contributions to the optomechanical force enables facile dynamical control and spatial localization of topological solitons. Our findings reveal unusual solitonic tractor beams and emergent light–matter self-patterning phenomena that could aid in creating new breeds of nonlinear photonic materials and devices. Researchers demonstrate systems in which optical solitons coexist and interact with topological solitonic structures localized in the molecular alignment field of a soft birefringent medium. The findings could lead to solitonic tractor beams and new light–matter self-patterning phenomena.
ISSN:1749-4885
1749-4893
DOI:10.1038/s41566-022-01002-1