Numerical study of time-dependent deformation and cracking in brittle rocks with phase-field method and application to slope instability analysis

Most rocks exhibit time-dependent deformation and failure. Two main mechanisms are generally considered, the progressive growth of cracks and viscoelastic and/or viscoplastic deformation. In this study, cracking process is described by a viscous phase-field method which is coupled with a viscoplasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2022-07, Vol.155, p.105144, Article 105144
Hauptverfasser: Wang, Meng, Yu, Zhan, Shen, Wanqing, Shao, Jianfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most rocks exhibit time-dependent deformation and failure. Two main mechanisms are generally considered, the progressive growth of cracks and viscoelastic and/or viscoplastic deformation. In this study, cracking process is described by a viscous phase-field method which is coupled with a viscoplastic model. The evolution of crack field is controlled by both elastic and viscoplastic tensile volumetric and deviatoric strains. The threshold of viscoplastic deformation is weakened by the growth of cracks. The efficiency of the proposed model is first assessed by comparing numerical predictions with experimental data in triaxial compression and creep tests. Then, the proposed model is applied to modeling time-dependent deformation and failure process of a high slope section in the left bank of Jinping-I hydropower station in China. Numerical predictions are compared with field measurements.
ISSN:1365-1609
1873-4545
DOI:10.1016/j.ijrmms.2022.105144