Euclid : Fast two-point correlation function covariance through linear construction

We present a method for fast evaluation of the covariance matrix for a two-point galaxy correlation function (2PCF) measured with the Landy–Szalay estimator. The standard way of evaluating the covariance matrix consists in running the estimator on a large number of mock catalogs, and evaluating thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2022-10, Vol.666, p.A129
Hauptverfasser: Keihänen, E., Lindholm, V., Monaco, P., Blot, L., Carbone, C., Kiiveri, K., Sánchez, A. G., Viitanen, A., Valiviita, J., Amara, A., Auricchio, N., Baldi, M., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carretero, J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Cropper, M., Da Silva, A., Degaudenzi, H., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Fumana, M., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hormuth, F., Jahnke, K., Kümmel, M., Kermiche, S., Kiessling, A., Kitching, T., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Marulli, F., Massey, R., Melchior, M., Meneghetti, M., Meylan, G., Moresco, M., Morin, B., Moscardini, L., Munari, E., Niemi, S. M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L., Raison, F., Renzi, A., Rhodes, J., Romelli, E., Saglia, R., Sartoris, B., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Sirignano, C., Sirri, G., Stanco, L., Surace, C., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method for fast evaluation of the covariance matrix for a two-point galaxy correlation function (2PCF) measured with the Landy–Szalay estimator. The standard way of evaluating the covariance matrix consists in running the estimator on a large number of mock catalogs, and evaluating their sample covariance. With large random catalog sizes (random-to-data objects’ ratio M  ≫ 1) the computational cost of the standard method is dominated by that of counting the data-random and random-random pairs, while the uncertainty of the estimate is dominated by that of data-data pairs. We present a method called Linear Construction (LC), where the covariance is estimated for small random catalogs with a size of M  = 1 and M  = 2, and the covariance for arbitrary M is constructed as a linear combination of the two. We show that the LC covariance estimate is unbiased. We validated the method with PINOCCHIO simulations in the range r  = 20 − 200 h −1 Mpc. With M  = 50 and with 2 h −1 Mpc bins, the theoretical speedup of the method is a factor of 14. We discuss the impact on the precision matrix and parameter estimation, and present a formula for the covariance of covariance.
ISSN:0004-6361
1432-0746
1432-0756
DOI:10.1051/0004-6361/202244065