A review of finite-element methods for time-harmonic acoustics

State-of-the-art finite-element methods for time-harmonic acoustics governed by the Helmholtz equation are reviewed. Four major current challenges in the field are specifically addressed: the effective treatment of acoustic scattering in unbounded domains, including local and nonlocal absorbing boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2006-03, Vol.119 (3), p.1315-1330
1. Verfasser: Thompson, Lonny L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:State-of-the-art finite-element methods for time-harmonic acoustics governed by the Helmholtz equation are reviewed. Four major current challenges in the field are specifically addressed: the effective treatment of acoustic scattering in unbounded domains, including local and nonlocal absorbing boundary conditions, infinite elements, and absorbing layers; numerical dispersion errors that arise in the approximation of short unresolved waves, polluting resolved scales, and requiring a large computational effort; efficient algebraic equation solving methods for the resulting complex-symmetric (non-Hermitian) matrix systems including sparse iterative and domain decomposition methods; and a posteriori error estimates for the Helmholtz operator required for adaptive methods. Mesh resolution to control phase error and bound dispersion or pollution errors measured in global norms for large wave numbers in finite-element methods are described. Stabilized, multiscale, and other wave-based discretization methods developed to reduce this error are reviewed. A review of finite-element methods for acoustic inverse problems and shape optimization is also given.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.2164987