Dielectric barrier discharge plasma actuator to control turbulent flow downstream of a backward-facing step
The objective of these experiments was to determine the optimal forcing location and unsteady forcing actuation produced by a single dielectric barrier discharge plasma actuator for controlling the flow downstream of a backward-facing step. The investigated configuration is a 30-mm-height step mount...
Gespeichert in:
Veröffentlicht in: | Experiments in fluids 2015-04, Vol.56 (4), p.1-16, Article 70 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of these experiments was to determine the optimal forcing location and unsteady forcing actuation produced by a single dielectric barrier discharge plasma actuator for controlling the flow downstream of a backward-facing step. The investigated configuration is a 30-mm-height step mounted in a closed-loop wind tunnel. The flow velocity is fixed at 15 m/s, corresponding to a Reynolds number based on the step height equal to 3 × 10
4
(
Re
θ
= 1400). The control authority of the plasma discharge is highlighted by the time-averaged modification of the reattachment point and by the effects obtained on the turbulent dynamics of the reattached shear layer. Several locations of the device actuator are considered, and a parametric study of the input signal is investigated for each location. This procedure leads to the definition of an optimal control configuration regarding the minimization of the reattachment length. When the actuator—that produces an electrohydrodynamic force resulting in an electric wind jet—is located upstream the separation point, it can manipulate the first stages of the formation of the turbulent free shear layer and consequently to modify the flow dynamics. Maximum effects have been observed when the high voltage is burst modulated at a frequency
f
BM
= 125 Hz with a duty-cycle of 50 %. This forcing corresponds to a Strouhal number based on the momentum thickness equal to 0.011, a value corresponding to the convective instability or Kelvin–Helmholtz instability of the separated shear layer. |
---|---|
ISSN: | 0723-4864 1432-1114 |
DOI: | 10.1007/s00348-015-1939-1 |