Optimal transport pseudometrics for quantum and classical densities

This paper proves variants of the triangle inequality for the quantum analogues of the Wasserstein metric of exponent 2 introduced in Golse et al. (2016) [13] to compare two density operators, and in Golse and Paul (2017) [14] to compare a phase space probability measure and a density operator. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2022-05, Vol.282 (9), p.109417, Article 109417
Hauptverfasser: Golse, François, Paul, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proves variants of the triangle inequality for the quantum analogues of the Wasserstein metric of exponent 2 introduced in Golse et al. (2016) [13] to compare two density operators, and in Golse and Paul (2017) [14] to compare a phase space probability measure and a density operator. The argument differs noticeably from the classical proof of the triangle inequality for Wasserstein metrics, which is based on a disintegration theorem for probability measures, and uses in particular an analogue of the Kantorovich duality for the functional defined in Golse and Paul (2017) [14]. Finally, this duality theorem is used to define an analogue of the Brenier transport map for the functional defined in Golse and Paul (2017) [14] to compare a phase space probability measure and a density operator.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2022.109417