Optimal transport pseudometrics for quantum and classical densities
This paper proves variants of the triangle inequality for the quantum analogues of the Wasserstein metric of exponent 2 introduced in Golse et al. (2016) [13] to compare two density operators, and in Golse and Paul (2017) [14] to compare a phase space probability measure and a density operator. The...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2022-05, Vol.282 (9), p.109417, Article 109417 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proves variants of the triangle inequality for the quantum analogues of the Wasserstein metric of exponent 2 introduced in Golse et al. (2016) [13] to compare two density operators, and in Golse and Paul (2017) [14] to compare a phase space probability measure and a density operator. The argument differs noticeably from the classical proof of the triangle inequality for Wasserstein metrics, which is based on a disintegration theorem for probability measures, and uses in particular an analogue of the Kantorovich duality for the functional defined in Golse and Paul (2017) [14]. Finally, this duality theorem is used to define an analogue of the Brenier transport map for the functional defined in Golse and Paul (2017) [14] to compare a phase space probability measure and a density operator. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2022.109417 |