Existence of entropy solutions to nonlinear degenerate parabolic problems with variable exponent and L1-data
In the present paper, we prove existence results of entropy solutions to a class of nonlinear degenerate parabolic (·)-Laplacian problem with Dirichlet-type boundary conditions and data. The main tool used here is the Rothe method combined with the theory of variable exponent Sobolev spaces.
Gespeichert in:
Veröffentlicht in: | Communications in Mathematics 2020-07, Vol.28 (1), p.67-88 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we prove existence results of entropy solutions to a class of nonlinear degenerate parabolic
(·)-Laplacian problem with Dirichlet-type boundary conditions and
data. The main tool used here is the Rothe method combined with the theory of variable exponent Sobolev spaces. |
---|---|
ISSN: | 1804-1388 2336-1298 |
DOI: | 10.2478/cm-2020-0006 |