Generalized reverse derivations and commutativity of prime rings
Let be a prime ring with center ) and a nonzero right ideal of . Suppose that admits a generalized reverse derivation ( , ) such that )) ≠ 0. In the present paper, we shall prove that if one of the following conditions holds: (i) ( ) ± ∈ (ii) ([ , ]) ± [ ( ), ] ∈ (iii) ([ ]) [ ( ), ( )] ∈ (iv) ( ο )...
Gespeichert in:
Veröffentlicht in: | Communications in Mathematics 2019-06, Vol.27 (1), p.43-50 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
be a prime ring with center
) and
a nonzero right ideal of
. Suppose that
admits a generalized reverse derivation (
,
) such that
)) ≠ 0. In the present paper, we shall prove that if one of the following conditions holds:
(i)
(
) ±
∈
(ii)
([
,
]) ± [
(
),
] ∈
(iii)
([
])
[
(
),
(
)] ∈
(iv)
(
ο
) ±
(
) ο
(
) ∈
(v) [
(
),
] ± [
,
(
)] ∈
(vi)
(
) ο
ο
(
) ∈
for all
∈
, then
is commutative. |
---|---|
ISSN: | 2336-1298 1804-1388 2336-1298 |
DOI: | 10.2478/cm-2019-0004 |