Observer Design for Nonlinear Systems with Equivariance
Equivariance is a common and natural property of many nonlinear control systems, especially those associated with models of mechatronic and navigation systems. Such systems admit a symmetry, associated with the equivariance, that provides structure enabling the design of robust and high-performance...
Gespeichert in:
Veröffentlicht in: | Annual review of control, robotics, and autonomous systems robotics, and autonomous systems, 2022-05, Vol.5 (1), p.221-252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Equivariance is a common and natural property of many nonlinear control systems, especially those associated with models of mechatronic and navigation systems. Such systems admit a symmetry, associated with the equivariance, that provides structure enabling the design of robust and high-performance observers. A key insight is to pose the observer state to lie in the symmetry group rather than on the system state space. This allows one to define a global intrinsic equivariant error but poses a challenge in defining internal dynamics for the observer. By choosing an equivariant lift of the system dynamics for the observer internal model, we show that the error dynamics have a particularly nice form. Applying the methodology of extended Kalman filtering to the equivariant error state yields a filter we term the equivariant filter. The geometry of the state-space manifold appears naturally as a curvature modification to the classical Riccati equation for extended Kalman filtering. The equivariant filter exploits the symmetry and respects the geometry of an equivariant system model, and thus yields high-performance, robust filters for a wide range of mechatronic and navigation systems. |
---|---|
ISSN: | 2573-5144 2573-5144 |
DOI: | 10.1146/annurev-control-061520-010324 |