Camera, LiDAR and Multi-modal SLAM Systems for Autonomous Ground Vehicles: a Survey

Simultaneous Localization and Mapping (SLAM) have been widely studied over the last years for autonomous vehicles. SLAM achieves its purpose by constructing a map of the unknown environment while keeping track of the location. A major challenge, which is paramount during the design of SLAM systems,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2022-05, Vol.105 (1), Article 2
Hauptverfasser: Chghaf, Mohammed, Rodriguez, Sergio, Ouardi, Abdelhafid El
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simultaneous Localization and Mapping (SLAM) have been widely studied over the last years for autonomous vehicles. SLAM achieves its purpose by constructing a map of the unknown environment while keeping track of the location. A major challenge, which is paramount during the design of SLAM systems, lies in the efficient use of onboard sensors to perceive the environment. The most widely applied algorithms are camera-based SLAM and LiDAR-based SLAM. Recent research focuses on the fusion of camera-based and LiDAR-based frameworks that show promising results. In this paper, we present a study of commonly used sensors and the fundamental theories behind SLAM algorithms. The study then presents the hardware architectures used to process these algorithms and the performance obtained when possible. Secondly, we highlight state-of-the-art methodologies in each modality and in the multi-modal framework. A brief comparison followed by future challenges is then underlined. Additionally, we provide insights to possible fusion approaches that can increase the robustness and accuracy of modern SLAM algorithms; hence allowing the hardware-software co-design of embedded systems taking into account the algorithmic complexity and the embedded architectures and real-time constraints.
ISSN:0921-0296
1573-0409
DOI:10.1007/s10846-022-01582-8