On the polygonal Faber-Krahn inequality

It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal de l'École polytechnique. Mathématiques 2024-01, Vol.11, p.19-105
Hauptverfasser: Bogosel, Beniamin, Bucur, Dorin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue
container_start_page 19
container_title Journal de l'École polytechnique. Mathématiques
container_volume 11
creator Bogosel, Beniamin
Bucur, Dorin
description It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.
doi_str_mv 10.5802/jep.250
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03625471v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03625471v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f77b8fc2461ba0646caa48ca5746b0acf3f7ac92ae61f8721a38053924c9dd783</originalsourceid><addsrcrecordid>eNpNkE1Lw0AYhBdRsNTiX8iteEjdffczx1KsLQZ6UfC2vNnumkhM4iYK-femVMTTDMPMHB5CbhldSUPh_t13K5D0gswANE0lM6-X__w1WfR9VVChFGip9IwsD00ylD7p2np8axusky0WPqZPEcsmqRr_-YV1NYw35Cpg3fvFr87Jy_bhebNL88PjfrPOUwcZDGnQujDBgVCsQKqEcojCOJRaqIKiCzxodBmgVywYDQy5oZJnIFx2PGrD5-Tu_FtibbtYfWAcbYuV3a1ze8ooVyCFZt9s6i7PXRfbvo8-_A0YtSccdsJhJxz8BwkXUMM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the polygonal Faber-Krahn inequality</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bogosel, Beniamin ; Bucur, Dorin</creator><creatorcontrib>Bogosel, Beniamin ; Bucur, Dorin</creatorcontrib><description>It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.</description><identifier>ISSN: 2270-518X</identifier><identifier>ISSN: 2429-7100</identifier><identifier>EISSN: 2270-518X</identifier><identifier>DOI: 10.5802/jep.250</identifier><language>eng</language><publisher>École polytechnique</publisher><subject>Mathematics</subject><ispartof>Journal de l'École polytechnique. Mathématiques, 2024-01, Vol.11, p.19-105</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f77b8fc2461ba0646caa48ca5746b0acf3f7ac92ae61f8721a38053924c9dd783</citedby><cites>FETCH-LOGICAL-c292t-f77b8fc2461ba0646caa48ca5746b0acf3f7ac92ae61f8721a38053924c9dd783</cites><orcidid>0000-0002-8331-8481 ; 0000-0001-7535-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03625471$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bogosel, Beniamin</creatorcontrib><creatorcontrib>Bucur, Dorin</creatorcontrib><title>On the polygonal Faber-Krahn inequality</title><title>Journal de l'École polytechnique. Mathématiques</title><description>It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.</description><subject>Mathematics</subject><issn>2270-518X</issn><issn>2429-7100</issn><issn>2270-518X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AYhBdRsNTiX8iteEjdffczx1KsLQZ6UfC2vNnumkhM4iYK-femVMTTDMPMHB5CbhldSUPh_t13K5D0gswANE0lM6-X__w1WfR9VVChFGip9IwsD00ylD7p2np8axusky0WPqZPEcsmqRr_-YV1NYw35Cpg3fvFr87Jy_bhebNL88PjfrPOUwcZDGnQujDBgVCsQKqEcojCOJRaqIKiCzxodBmgVywYDQy5oZJnIFx2PGrD5-Tu_FtibbtYfWAcbYuV3a1ze8ooVyCFZt9s6i7PXRfbvo8-_A0YtSccdsJhJxz8BwkXUMM</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Bogosel, Beniamin</creator><creator>Bucur, Dorin</creator><general>École polytechnique</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8331-8481</orcidid><orcidid>https://orcid.org/0000-0001-7535-5197</orcidid></search><sort><creationdate>20240101</creationdate><title>On the polygonal Faber-Krahn inequality</title><author>Bogosel, Beniamin ; Bucur, Dorin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f77b8fc2461ba0646caa48ca5746b0acf3f7ac92ae61f8721a38053924c9dd783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogosel, Beniamin</creatorcontrib><creatorcontrib>Bucur, Dorin</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal de l'École polytechnique. Mathématiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogosel, Beniamin</au><au>Bucur, Dorin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the polygonal Faber-Krahn inequality</atitle><jtitle>Journal de l'École polytechnique. Mathématiques</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>11</volume><spage>19</spage><epage>105</epage><pages>19-105</pages><issn>2270-518X</issn><issn>2429-7100</issn><eissn>2270-518X</eissn><abstract>It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.</abstract><pub>École polytechnique</pub><doi>10.5802/jep.250</doi><tpages>87</tpages><orcidid>https://orcid.org/0000-0002-8331-8481</orcidid><orcidid>https://orcid.org/0000-0001-7535-5197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2270-518X
ispartof Journal de l'École polytechnique. Mathématiques, 2024-01, Vol.11, p.19-105
issn 2270-518X
2429-7100
2270-518X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03625471v1
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Mathematics
title On the polygonal Faber-Krahn inequality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20polygonal%20Faber-Krahn%20inequality&rft.jtitle=Journal%20de%20l'%C3%89cole%20polytechnique.%20Math%C3%A9matiques&rft.au=Bogosel,%20Beniamin&rft.date=2024-01-01&rft.volume=11&rft.spage=19&rft.epage=105&rft.pages=19-105&rft.issn=2270-518X&rft.eissn=2270-518X&rft_id=info:doi/10.5802/jep.250&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03625471v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true