On the polygonal Faber-Krahn inequality
It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles a...
Gespeichert in:
Veröffentlicht in: | Journal de l'École polytechnique. Mathématiques 2024-01, Vol.11, p.19-105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | |
container_start_page | 19 |
container_title | Journal de l'École polytechnique. Mathématiques |
container_volume | 11 |
creator | Bogosel, Beniamin Bucur, Dorin |
description | It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors. |
doi_str_mv | 10.5802/jep.250 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03625471v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03625471v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f77b8fc2461ba0646caa48ca5746b0acf3f7ac92ae61f8721a38053924c9dd783</originalsourceid><addsrcrecordid>eNpNkE1Lw0AYhBdRsNTiX8iteEjdffczx1KsLQZ6UfC2vNnumkhM4iYK-femVMTTDMPMHB5CbhldSUPh_t13K5D0gswANE0lM6-X__w1WfR9VVChFGip9IwsD00ylD7p2np8axusky0WPqZPEcsmqRr_-YV1NYw35Cpg3fvFr87Jy_bhebNL88PjfrPOUwcZDGnQujDBgVCsQKqEcojCOJRaqIKiCzxodBmgVywYDQy5oZJnIFx2PGrD5-Tu_FtibbtYfWAcbYuV3a1ze8ooVyCFZt9s6i7PXRfbvo8-_A0YtSccdsJhJxz8BwkXUMM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the polygonal Faber-Krahn inequality</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bogosel, Beniamin ; Bucur, Dorin</creator><creatorcontrib>Bogosel, Beniamin ; Bucur, Dorin</creatorcontrib><description>It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.</description><identifier>ISSN: 2270-518X</identifier><identifier>ISSN: 2429-7100</identifier><identifier>EISSN: 2270-518X</identifier><identifier>DOI: 10.5802/jep.250</identifier><language>eng</language><publisher>École polytechnique</publisher><subject>Mathematics</subject><ispartof>Journal de l'École polytechnique. Mathématiques, 2024-01, Vol.11, p.19-105</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f77b8fc2461ba0646caa48ca5746b0acf3f7ac92ae61f8721a38053924c9dd783</citedby><cites>FETCH-LOGICAL-c292t-f77b8fc2461ba0646caa48ca5746b0acf3f7ac92ae61f8721a38053924c9dd783</cites><orcidid>0000-0002-8331-8481 ; 0000-0001-7535-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03625471$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bogosel, Beniamin</creatorcontrib><creatorcontrib>Bucur, Dorin</creatorcontrib><title>On the polygonal Faber-Krahn inequality</title><title>Journal de l'École polytechnique. Mathématiques</title><description>It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.</description><subject>Mathematics</subject><issn>2270-518X</issn><issn>2429-7100</issn><issn>2270-518X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AYhBdRsNTiX8iteEjdffczx1KsLQZ6UfC2vNnumkhM4iYK-femVMTTDMPMHB5CbhldSUPh_t13K5D0gswANE0lM6-X__w1WfR9VVChFGip9IwsD00ylD7p2np8axusky0WPqZPEcsmqRr_-YV1NYw35Cpg3fvFr87Jy_bhebNL88PjfrPOUwcZDGnQujDBgVCsQKqEcojCOJRaqIKiCzxodBmgVywYDQy5oZJnIFx2PGrD5-Tu_FtibbtYfWAcbYuV3a1ze8ooVyCFZt9s6i7PXRfbvo8-_A0YtSccdsJhJxz8BwkXUMM</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Bogosel, Beniamin</creator><creator>Bucur, Dorin</creator><general>École polytechnique</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8331-8481</orcidid><orcidid>https://orcid.org/0000-0001-7535-5197</orcidid></search><sort><creationdate>20240101</creationdate><title>On the polygonal Faber-Krahn inequality</title><author>Bogosel, Beniamin ; Bucur, Dorin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f77b8fc2461ba0646caa48ca5746b0acf3f7ac92ae61f8721a38053924c9dd783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogosel, Beniamin</creatorcontrib><creatorcontrib>Bucur, Dorin</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal de l'École polytechnique. Mathématiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogosel, Beniamin</au><au>Bucur, Dorin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the polygonal Faber-Krahn inequality</atitle><jtitle>Journal de l'École polytechnique. Mathématiques</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>11</volume><spage>19</spage><epage>105</epage><pages>19-105</pages><issn>2270-518X</issn><issn>2429-7100</issn><eissn>2270-518X</eissn><abstract>It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.</abstract><pub>École polytechnique</pub><doi>10.5802/jep.250</doi><tpages>87</tpages><orcidid>https://orcid.org/0000-0002-8331-8481</orcidid><orcidid>https://orcid.org/0000-0001-7535-5197</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2270-518X |
ispartof | Journal de l'École polytechnique. Mathématiques, 2024-01, Vol.11, p.19-105 |
issn | 2270-518X 2429-7100 2270-518X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03625471v1 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Mathematics |
title | On the polygonal Faber-Krahn inequality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20polygonal%20Faber-Krahn%20inequality&rft.jtitle=Journal%20de%20l'%C3%89cole%20polytechnique.%20Math%C3%A9matiques&rft.au=Bogosel,%20Beniamin&rft.date=2024-01-01&rft.volume=11&rft.spage=19&rft.epage=105&rft.pages=19-105&rft.issn=2270-518X&rft.eissn=2270-518X&rft_id=info:doi/10.5802/jep.250&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03625471v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |