On the polygonal Faber-Krahn inequality

It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal de l'École polytechnique. Mathématiques 2024-01, Vol.11, p.19-105
Hauptverfasser: Bogosel, Beniamin, Bucur, Dorin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n ≥ 5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n = 5, 6, 7, 8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.
ISSN:2270-518X
2429-7100
2270-518X
DOI:10.5802/jep.250