Return-time Lq -spectrum for equilibrium states with potentials of summable variation

Let $(X_k)_{k\geq 0}$ be a stationary and ergodic process with joint distribution $\mu$ where the random variables $X_k$ take values in a finite set $\mathcal{A}$. Let $R_n$ be the first time this process repeats its first $n$ symbols of output. It is well-known that $\frac{1}{n}\log R_n$ converges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2023-08, Vol.43 (8), p.2489-2515
Hauptverfasser: Abadi, M, Amorim, V, Chazottes, J.-R, Gallo, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $(X_k)_{k\geq 0}$ be a stationary and ergodic process with joint distribution $\mu$ where the random variables $X_k$ take values in a finite set $\mathcal{A}$. Let $R_n$ be the first time this process repeats its first $n$ symbols of output. It is well-known that $\frac{1}{n}\log R_n$ converges almost surely to the entropy of the process. Refined properties of $R_n$ (large deviations, multifractality, etc) are encoded in the return-time $L^q$-spectrum defined as\[\EuScript{R}(q)=\lim_n\frac{1}{n}\log\int R_n^q \dd\mu\quad (q\in\R)\]provided the limit exists.We consider the case where $(X_k)_{k\geq 0}$ is distributed according to the equilibrium state of a potential $\varphi:\mathcal{A}^{\N}\to\R$ with summable variation,and we prove that \[\EuScript{R}(q)=\begin{cases}P((1-q)\varphi) & \text{for}\;\; q\geq q_\varphi^*\\\sup_\eta \int \varphi \dd\eta & \text{for}\;\; q
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2022.40