Return-time Lq -spectrum for equilibrium states with potentials of summable variation
Let $(X_k)_{k\geq 0}$ be a stationary and ergodic process with joint distribution $\mu$ where the random variables $X_k$ take values in a finite set $\mathcal{A}$. Let $R_n$ be the first time this process repeats its first $n$ symbols of output. It is well-known that $\frac{1}{n}\log R_n$ converges...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2023-08, Vol.43 (8), p.2489-2515 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $(X_k)_{k\geq 0}$ be a stationary and ergodic process with joint distribution $\mu$ where the random variables $X_k$ take values in a finite set $\mathcal{A}$. Let $R_n$ be the first time this process repeats its first $n$ symbols of output. It is well-known that $\frac{1}{n}\log R_n$ converges almost surely to the entropy of the process. Refined properties of $R_n$ (large deviations, multifractality, etc) are encoded in the return-time $L^q$-spectrum defined as\[\EuScript{R}(q)=\lim_n\frac{1}{n}\log\int R_n^q \dd\mu\quad (q\in\R)\]provided the limit exists.We consider the case where $(X_k)_{k\geq 0}$ is distributed according to the equilibrium state of a potential $\varphi:\mathcal{A}^{\N}\to\R$ with summable variation,and we prove that \[\EuScript{R}(q)=\begin{cases}P((1-q)\varphi) & \text{for}\;\; q\geq q_\varphi^*\\\sup_\eta \int \varphi \dd\eta & \text{for}\;\; q |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2022.40 |