On μ-Dvoretzky random covering of the circle
In this paper, we study the Dvoretzky covering problem with non-uniformly distributed centers. When the probability law of the centers is absolutely continuous w.r.t. Lebesgue measure and satisfies a regularity condition on the set of essential infimum points, we give a necessary and sufficient cond...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2021-05, Vol.27 (2), p.1270-1290 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the Dvoretzky covering problem with non-uniformly distributed centers. When the probability law of the centers is absolutely continuous w.r.t. Lebesgue measure and satisfies a regularity condition on the set of essential infimum points, we give a necessary and sufficient condition for covering the circle. When the lengths of covering intervals are of the form l(n) = c/n, we give a necessary and sufficient condition for covering the circle, without imposing any regularity on the density function. |
---|---|
ISSN: | 1350-7265 |
DOI: | 10.3150/20-BEJ1273 |