On μ-Dvoretzky random covering of the circle

In this paper, we study the Dvoretzky covering problem with non-uniformly distributed centers. When the probability law of the centers is absolutely continuous w.r.t. Lebesgue measure and satisfies a regularity condition on the set of essential infimum points, we give a necessary and sufficient cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2021-05, Vol.27 (2), p.1270-1290
Hauptverfasser: Fan, Aihua, Karagulyan, Davit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the Dvoretzky covering problem with non-uniformly distributed centers. When the probability law of the centers is absolutely continuous w.r.t. Lebesgue measure and satisfies a regularity condition on the set of essential infimum points, we give a necessary and sufficient condition for covering the circle. When the lengths of covering intervals are of the form l(n) = c/n, we give a necessary and sufficient condition for covering the circle, without imposing any regularity on the density function.
ISSN:1350-7265
DOI:10.3150/20-BEJ1273