Mathematical analysis of a hybrid model: Impacts of individual behaviors on the spreading of an epidemic
In this paper, we investigate the well-posedness and dynamics of a class of hybrid models, obtained by coupling a system of ordinary differential equations and an agent-based model. These hybrid models intend to integrate the microscopic dynamics of individual behaviors into the macroscopic evolutio...
Gespeichert in:
Veröffentlicht in: | Networks and heterogeneous media 2022-06, Vol.17 (3), p.333-357 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the well-posedness and dynamics of a class of hybrid models, obtained by coupling a system of ordinary differential equations and an agent-based model. These hybrid models intend to integrate the microscopic dynamics of individual behaviors into the macroscopic evolution of various population dynamics models, and can be applied to a great number of complex problems arising in economics, sociology, geography and epidemiology. Here, in particular, we apply our general framework to the current COVID-19 pandemic. We establish, at a theoretical level, sufficient conditions which lead to particular solutions exhibiting irregular oscillations and interpret those particular solutions as pandemic waves. We perform numerical simulations of a set of relevant scenarios which show how the microscopic processes impact the macroscopic dynamics. |
---|---|
ISSN: | 1556-1801 1556-181X |
DOI: | 10.3934/nhm.2022010 |