A general study of extremes of stationary tessellations with examples
Let m be a random tessellation in Rd, d≥1, observed in a bounded Borel subset W and f(⋅) be a measurable function defined on the set of convex bodies. A point z(C), called the nucleus of C, is associated with each cell C of m. Applying f(⋅) to all the cells of m, we investigate the order statistics...
Gespeichert in:
Veröffentlicht in: | Stochastic processes and their applications 2014-09, Vol.124 (9), p.2917-2953 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let m be a random tessellation in Rd, d≥1, observed in a bounded Borel subset W and f(⋅) be a measurable function defined on the set of convex bodies. A point z(C), called the nucleus of C, is associated with each cell C of m. Applying f(⋅) to all the cells of m, we investigate the order statistics of f(C) over all cells C∈m with nucleus in Wρ=ρ1/dW when ρ goes to infinity. Under a strong mixing property and a local condition on m and f(⋅), we show a general theorem which reduces the study of the order statistics to the random variable f(C), where C is the typical cell of m. The proof is deduced from a Poisson approximation on a dependency graph via the Chen–Stein method. We obtain that the point process {(ρ−1/dz(C),aρ−1(f(C)−bρ)),C∈m,z(C)∈Wρ}, where aρ>0 and bρ are two suitable functions depending on ρ, converges to a non-homogeneous Poisson point process. Several applications of the general theorem are derived in the particular setting of Poisson–Voronoi and Poisson–Delaunay tessellations and for different functions f(⋅) such as the inradius, the circumradius, the area, the volume of the Voronoi flower and the distance to the farthest neighbor. |
---|---|
ISSN: | 0304-4149 1879-209X |
DOI: | 10.1016/j.spa.2014.04.009 |