A pressure-robust HHO method for the solution of the incompressible Navier–Stokes equations on general meshes

Abstract In a recent work (Castanon Quiroz & Di Pietro (2020) A hybrid high-order method for the incompressible Navier–Stokes problem robust for large irrotational body forces. Comput. Math. Appl., 79, 2655–2677), we have introduced a pressure-robust hybrid high-order method for the numerical so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2024-02, Vol.44 (1), p.397-434
Hauptverfasser: Castanon Quiroz, Daniel, Di Pietro, Daniele A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract In a recent work (Castanon Quiroz & Di Pietro (2020) A hybrid high-order method for the incompressible Navier–Stokes problem robust for large irrotational body forces. Comput. Math. Appl., 79, 2655–2677), we have introduced a pressure-robust hybrid high-order method for the numerical solution of the incompressible Navier–Stokes equations on matching simplicial meshes. Pressure-robust methods are characterized by error estimates for the velocity that are fully independent of the pressure. A crucial question was left open in that work, namely whether the proposed construction could be extended to general polytopal meshes. In this paper, we provide a positive answer to this question. Specifically, we introduce a novel divergence-preserving velocity reconstruction that hinges on the solution inside each element of a mixed problem on a subtriangulation, then use it to design discretizations of the body force and convective terms that lead to pressure robustness. An in-depth theoretical study of the properties of this velocity reconstruction, and their reverberation on the scheme, is carried out for arbitrary polynomial degrees $k\geq 0$ and meshes composed of general polytopes. The theoretical convergence estimates and the pressure robustness of the method are confirmed by an extensive panel of numerical examples.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drad007