Recovering point sources for the inhomogeneous Helmholtz equation

The paper is concerned with an inverse point source problem for the Helmholtz equation. It consists of recovering the locations and amplitudes of a finite number of radiative point sources inside a given inhomogeneous medium from the knowledge of a single boundary measurement. The main result of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2021-09, Vol.37 (9), p.95005
Hauptverfasser: Bao, Gang, Liu, Yuantong, Triki, Faouzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is concerned with an inverse point source problem for the Helmholtz equation. It consists of recovering the locations and amplitudes of a finite number of radiative point sources inside a given inhomogeneous medium from the knowledge of a single boundary measurement. The main result of the paper is a new Hölder type stability estimate for the inversion under the assumption that the point sources are well separated. The proof of the stability is based on a combination of Carleman estimates and a technique for proving uniqueness of the Cauchy problem.
ISSN:0266-5611
1361-6420
DOI:10.1088/1361-6420/ac164b