Isomorphisms among quantum Grothendieck rings and propagation of positivity

Let ( be a pair of complex finite-dimensional simple Lie algebras whose Dynkin diagrams are related by (un)folding, with being of simply-laced type. We construct a collection of ring isomorphisms between the quantum Grothendieck rings of monoidal categories and of finite-dimensional representations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal für die reine und angewandte Mathematik 2022-04, Vol.2022 (785), p.117-185
Hauptverfasser: Fujita, Ryo, Hernandez, David, Oh, Se-jin, Oya, Hironori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( be a pair of complex finite-dimensional simple Lie algebras whose Dynkin diagrams are related by (un)folding, with being of simply-laced type. We construct a collection of ring isomorphisms between the quantum Grothendieck rings of monoidal categories and of finite-dimensional representations over the quantum loop algebras of and , respectively. As a consequence, we solve long-standing problems: the positivity of the analogs of Kazhdan–Lusztig polynomials and the positivity of the structure constants of the quantum Grothendieck rings for any non-simply-laced . In addition, comparing our isomorphisms with the categorical relations arising from the generalized quantum affine Schur–Weyl dualities, we prove the analog of Kazhdan–Lusztig conjecture (formulated in [D. Hernandez, Algebraic approach to -characters, Adv. Math. 187 2004, 1, 1–52]) for simple modules in remarkable monoidal subcategories of for any non-simply-laced , and for any simple finite-dimensional modules in for of type . In the course of the proof we obtain and combine several new ingredients. In particular, we establish a quantum analog of -systems, and also we generalize the isomorphisms of [D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. reine angew. Math. 701 2015, 77–126, D. Hernandez and H. Oya, Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan–Lusztig algorithm, Adv. Math. 347 2019, 192–272] to all in a unified way, that is, isomorphisms between subalgebras of the quantum group of and subalgebras of the quantum Grothendieck ring of
ISSN:0075-4102
1435-5345
DOI:10.1515/crelle-2021-0088