Real-time multimode dynamics of terahertz quantum cascade lasers via intracavity self-detection: observation of self mode-locked population pulsations
Mode-locking operation and multimode instabilities in Terahertz (THz) quantum cascade lasers (QCLs) have been intensively investigated during the last decade. These studies have unveiled a rich phenomenology, owing to the unique properties of these lasers, in particular their ultrafast gain medium....
Gespeichert in:
Veröffentlicht in: | Optics express 2022-01, Vol.30 (3), p.3215-3229 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mode-locking operation and multimode instabilities in Terahertz (THz) quantum cascade lasers (QCLs) have been intensively investigated during the last decade. These studies have unveiled a rich phenomenology, owing to the unique properties of these lasers, in particular their ultrafast gain medium. Thanks to this, in QCLs a modulation of the intracavity field intensity gives rise to a strong modulation of the population inversion, directly affecting the laser current. In this work we show that this property can be used to study in real-time the dynamics of multimode THz QCLs, using a self-detection technique combined with a 60GHz real-time oscilloscope. To demonstrate the potential of this technique we investigate a 4.2THz QCL operating in free-running, and observe a self-starting periodic modulation of the laser current, producing trains of regularly spaced, ∼100ps-long pulses. Depending on the drive current we find two distinct regimes of oscillation with dramatically different properties: a first regime at the fundamental cavity repetition rate, characterised by large amplitude and phase noise, with coherence times of a few tens of periods; a much more regular second-harmonic-comb regime, with typical coherence times of ∼10
oscillation periods. We interpret these measurements using a set of effective semiconductor Maxwell-Bloch equations that qualitatively reproduce the fundamental features of the laser dynamics, indicating that the observed carrier-density and optical pulses are in antiphase, and appear as a rather shallow modulation on top of a continuous wave background. Thanks to its simple implementation and versatility, the demonstrated broadband self-detection technique is a powerful tool for the study of ultrafast dynamics in THz QCLs. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.444295 |