Production of n-propyl acetate by reactive distillation : Experimental and theoretical study

First steps of the development of a catalytic reactive distillation process for the production of n-propyl acetate based on experiments and simulations are proposed. The kinetics for homogeneously (sulphuric acid) and heterogeneously (Amberlyst 15) catalysed reaction were investigated and the consta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2007, Vol.85 (1), p.109-117
Hauptverfasser: BREHELIN, M, FORNER, F, ROUZINEAU, D, REPKE, J.-U, MEYER, X, MEYER, M, WOZNY, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:First steps of the development of a catalytic reactive distillation process for the production of n-propyl acetate based on experiments and simulations are proposed. The kinetics for homogeneously (sulphuric acid) and heterogeneously (Amberlyst 15) catalysed reaction were investigated and the constants for a pseudo-homogeneous model are presented. Pilot plant experiments were performed using a homogeneous strong acid catalyst in a packed column. A top-column decanter is used to withdraw the aqueous phase and to reflux the organic phase. Simulation results are in good agreement with experimental data. Thermodynamics nonidealities are taken into account using VLE and LLE NRTL interaction parameters. Alcohol conversion and n-propyl acetate purity may be dramatically increased just by adding to the pilot plant a stripping section in an additional column: six different configurations are identified to achieve such a production. The startup is studied in order to determine the best strategy to achieve steady-state conditions. The strong influence of the composition of the initial charging in the decanter can be seen and an initial charging of the two-phase top product leads to the fastest startup.
ISSN:0263-8762
1744-3563
DOI:10.1205/cherd06112