Engineering the plant microbiota in the context of the theory of ecological communities
[Display omitted] Crop-associated microorganisms are known to have a determining influence on crop growth and resistance to stresses. Indeed, microorganisms can deter pathogens, reduce stress levels, improve nutrition, and stimulate growth. However, the microbial communities associated with a plant...
Gespeichert in:
Veröffentlicht in: | Current opinion in biotechnology 2021-08, Vol.70, p.220-225 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Crop-associated microorganisms are known to have a determining influence on crop growth and resistance to stresses. Indeed, microorganisms can deter pathogens, reduce stress levels, improve nutrition, and stimulate growth. However, the microbial communities associated with a plant are rarely optimal for agricultural needs. But how can we engineer crops-associated microbial communities? An interesting framework to address this question is the theory of ecological communities that stipulates four processes by which communities can change: 1) selection, 2) dispersal, 3) speciation and 4) ecological drift. Of these, speciation and dispersal can result in the addition of new species to the plant microbiota, whereas selection and drift can lead to the loss of species. We believe that if these mechanisms are sufficiently understood, they could be harnessed to purposefully engineer the crop microbiota. Here, we will discuss the recent efforts to modify the phenotype of plants that are aligned with these ecological processes. |
---|---|
ISSN: | 0958-1669 1879-0429 |
DOI: | 10.1016/j.copbio.2021.06.009 |