Locally Mediated Entanglement in Linearized Quantum Gravity

The current interest in laboratory detection of entanglement mediated by gravity was sparked by an information-theoretic argument: entanglement mediated by a local field certifies that the field is not classical. Previous derivations of the effect modeled gravity as instantaneous; here we derive it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-03, Vol.130 (10), p.100202-100202, Article 100202
Hauptverfasser: Christodoulou, Marios, Di Biagio, Andrea, Aspelmeyer, Markus, Brukner, Časlav, Rovelli, Carlo, Howl, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current interest in laboratory detection of entanglement mediated by gravity was sparked by an information-theoretic argument: entanglement mediated by a local field certifies that the field is not classical. Previous derivations of the effect modeled gravity as instantaneous; here we derive it from linearized quantum general relativity while keeping Lorentz invariance explicit, using the path-integral formalism. In this framework, entanglement is clearly mediated by a quantum feature of the field. We also point out the possibility of observing "retarded" entanglement, which cannot be explained by an instantaneous interaction. This is a difficult experiment for gravity, but is plausible for the analogous electromagnetic case.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.130.100202