PD-1 is a novel regulator of human B-cell activation
The outcome of the adaptive immune response is determined by the integration of both positive and negative signals, respectively, induced upon the triggering of co-signaling receptors. One of them, programmed cell death 1 (PDCD1/PD-1) has largely been shown to be involved in the negative regulation...
Gespeichert in:
Veröffentlicht in: | International immunology 2013-02, Vol.25 (2), p.129-137 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The outcome of the adaptive immune response is determined by the integration of both positive and negative signals, respectively, induced upon the triggering of co-signaling receptors. One of them, programmed cell death 1 (PDCD1/PD-1) has largely been shown to be involved in the negative regulation of T-cell activation. However, PD-1 is also expressed on human B cells, and its role(s) in the process of human B-cell activation remains uncertain thus far. In this study, we describe the expression of PD-1 on the major human B-cells subsets isolated from peripheral blood and lymph nodes. We showed that PD-1 was expressed on naive B cells, was differentially expressed on peripheral IgM memory as compared with memory B cells and was lost on germinal center B cells. Expression of PD-1 ligands (PD-Ls) was induced by TLR9 activation. Finally, we showed that PD-1 was recruited to the B-cell receptor upon triggering. We determined that during TLR9 activation, blockade of PD-1/PD-Ls pathways indeed increased B-cell activation, proliferation and the production of inflammatory cytokines. Altogether, our results show, that, as reported in T cells, PD-1/PD-Ls complexes acted as inhibitors of the B-cell activation cascade and highlight the importance of devising future therapies able to modulate lymphocyte activation through the targeting of the PD-1/PD-Ls pathways. |
---|---|
ISSN: | 0953-8178 1460-2377 |
DOI: | 10.1093/intimm/dxs098 |