Mitigating the ill-posedness of first-arrival traveltime tomography using slopes: application to the eastern Nankai Trough (Japan) OBS data set
SUMMARY First-arrival traveltime tomography is one of the most used velocity model building techniques especially in sparse wide-angle acquisitions for deep crustal seismic imaging cases. Relying on the inversion of a picked attribute, the absolute traveltimes, the approach is ill-posed in terms of...
Gespeichert in:
Veröffentlicht in: | Geophysical journal international 2021-11, Vol.227 (2), p.898-921 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SUMMARY
First-arrival traveltime tomography is one of the most used velocity model building techniques especially in sparse wide-angle acquisitions for deep crustal seismic imaging cases. Relying on the inversion of a picked attribute, the absolute traveltimes, the approach is ill-posed in terms of non-uniqueness of the solution. The latter is remedied by proper regularization or the introduction of prior information. Indeed, since traveltime kernels are vulnerable to the velocity–depth ambiguity, the inversion is stabilized by the introduction of complementary data like reflections and explicit reflectors in the velocity models. Here, we propose to supplement first-arrival traveltimes by their slopes, in other words the horizontal component of the slowness vectors at the sources and/or receivers. Slopes are a crucial attribute in state of the art scattering-based or reflection-based tomographic methods like slope tomography or wavefront tomography where the differential information is needed in order to locate the scattering events position or to parametrize the wavefront. The optional but valuable injection of slopes as an objective measure in first-arrival traveltime tomography stabilizes the problem by constraining the emergence angle or in turn implicitly the turning point depth of the rays. We explain why slopes have a tremendous added value in such a tomographic problem and highlight its remedial effect in cases where the medium is unevenly illuminated. We also show that the contribution of slopes become even more significant when the acquisition is sparse as it is generally the case with ocean-bottom seismometer surveys. The inferred models from such an extended time-attributes tomography will be used as initial guesses in a full-waveform inversion workflow context. The proposed strategy is benchmarked in 2-D media against a dip section of the SEG/EAGE overthrust model and then followed by a revisit of ocean bottom seismometers data from the eastern-Nankai subduction margin as a real deep crustal case study. |
---|---|
ISSN: | 0956-540X 1365-246X |
DOI: | 10.1093/gji/ggab262 |