ON SOLUTIONS OF THE DIOPHANTINE EQUATION Fn1 + Fn2 + Fn3 + Fn4 = 2^a

Let (F n) n≥0 be the Fibonacci sequence given by F 0 = 0, F 1 = 1 and F n+2 = F n+1 + F n for n ≥ 0. In this paper, we solve all powers of two which are sums of four Fibonacci numbers with a few exceptions that we characterize.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra and related topics 2021, Vol.9 (2), p.131-148
Hauptverfasser: Tiebekabe, Pagdame, Diouf, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (F n) n≥0 be the Fibonacci sequence given by F 0 = 0, F 1 = 1 and F n+2 = F n+1 + F n for n ≥ 0. In this paper, we solve all powers of two which are sums of four Fibonacci numbers with a few exceptions that we characterize.
ISSN:2345-3931
2382-9877
DOI:10.22124/JART.2021.19294.1266