ON SOLUTIONS OF THE DIOPHANTINE EQUATION Fn1 + Fn2 + Fn3 + Fn4 = 2^a
Let (F n) n≥0 be the Fibonacci sequence given by F 0 = 0, F 1 = 1 and F n+2 = F n+1 + F n for n ≥ 0. In this paper, we solve all powers of two which are sums of four Fibonacci numbers with a few exceptions that we characterize.
Gespeichert in:
Veröffentlicht in: | Journal of algebra and related topics 2021, Vol.9 (2), p.131-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (F n) n≥0 be the Fibonacci sequence given by F 0 = 0, F 1 = 1 and F n+2 = F n+1 + F n for n ≥ 0. In this paper, we solve all powers of two which are sums of four Fibonacci numbers with a few exceptions that we characterize. |
---|---|
ISSN: | 2345-3931 2382-9877 |
DOI: | 10.22124/JART.2021.19294.1266 |