An original growth mode of MWCNTs on alumina supported iron catalysts

Multi-walled carbon nanotubes (MWCNTs) have been produced from ethylene by fluidized bed-catalytic chemical vapor deposition (FB-CCVD) on alumina supported iron catalyst powders. Both catalysts and MWCNTs-catalyst composites have been characterized by XRD, SEM-EDX, TEM, Mössbauer spectroscopy, TGA a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis 2009-04, Vol.263 (2), p.345-358
Hauptverfasser: Philippe, Régis, Caussat, Brigitte, Falqui, Andrea, Kihn, Yolande, Kalck, Philippe, Bordère, Serge, Plee, Dominique, Gaillard, Patrice, Bernard, Daniel, Serp, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-walled carbon nanotubes (MWCNTs) have been produced from ethylene by fluidized bed-catalytic chemical vapor deposition (FB-CCVD) on alumina supported iron catalyst powders. Both catalysts and MWCNTs-catalyst composites have been characterized by XRD, SEM-EDX, TEM, Mössbauer spectroscopy, TGA and nitrogen adsorption measurements at different stages of the process. The fresh catalyst is an alumina/iron oxide powder composed of amorphous iron(III) oxide nanoparticles located inside the porosity of the alumina support and of a micrometric crystalline α-iron(III) oxide surface film. The beginning of the CVD process provokes a brutal reconstruction and simultaneous carburization of the surface film that allows MWCNT nucleation and growth. These MWCNTs grow aligned between the support and the surface catalytic film, leading to a uniform consumption and uprising of the film. When the catalytic film has been consumed, the catalytic particles located inside the alumina porosity are slowly reduced and activated leading to a secondary MWCNT growth regime, which produces a generalized grain fragmentation and entangled MWCNT growth. Based on experimental observations and characterizations, this original two-stage growth mode is discussed and a general growth mechanism is proposed. MWCNTs grow aligned between the Al 2O 3 support and the iron surface catalytic film.
ISSN:0021-9517
1090-2694
DOI:10.1016/j.jcat.2009.02.027