Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa

We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry international 2022-05, Vol.60 (5), p.421-429
Hauptverfasser: Bezaeva, N. S., Gattacceca, J., Rochette, P., Sadykov, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 429
container_issue 5
container_start_page 421
container_title Geochemistry international
container_volume 60
creator Bezaeva, N. S.
Gattacceca, J.
Rochette, P.
Sadykov, R. A.
description We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” alloy (NiCrAl) together with a liquid pressure transmitting medium PES-1 (polyethylsiloxane) to ensure purely hydrostatic pressure. This technique allowed measuring magnetic remanence of investigated samples directly under pressure as well as upon decompression. Pressure was always applied in near-zero magnetic field ( 80 mT, i.e. whose main metal phase is tetrataenite (Fe 0.5 Ni 0.5 ). This study gives an overview of pressure sensitivity of ordinary chondrites up to 1.8 GPa and has implications for extraterrestrial paleomagnetism as it can help to interpret remanent magnetization of ordinary chondrites that suffered shock metamorphism processes.
doi_str_mv 10.1134/S0016702922050032
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03565123v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706547270</galeid><sourcerecordid>A706547270</sourcerecordid><originalsourceid>FETCH-LOGICAL-a407t-56ff779e23be5cb6547c805e1462f5e58cbd5ed274ec51ce0c576b7b193fc3db3</originalsourceid><addsrcrecordid>eNp1kU1rGzEQhkVpoG7SH9CboKce1tW3do_GbeKCwYEmZ6HVjhwFW3Kl3UL666tlS3soZQ6CmecdHjQIvadkTSkXn74RQpUmrGOMSEI4e4VWVErV0E61r9FqHjfz_A16W8ozIULwTq_Q4TOc7THCGH7aMaSIk8eHPIRo8wvePqU45DBCwVMcIOPdy5BTGSvp8H2GUqYMeLrgMWG6bvHdvb1BV96eCrz7_V6jx9svD9tdsz_cfd1u9o0VRI-NVN5r3QHjPUjXKym0a4kEKhTzEmTr-kHCwLQAJ6kD4qRWve5px73jQ8-v0cdl75M9mUsO5-prkg1mt9mbuUe4VJIy_oNW9sPCXnL6PkEZzXOacqx6hikl2lZQwSq1XqijPYEJ0acxW1drgHNwKYIPtb_RZJZlmtQAXQKu_knJ4P94UGLmo5h_jlIzbMmUysYj5L8q_w_9ArTCi9s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664884142</pqid></control><display><type>article</type><title>Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa</title><source>Springer Nature - Complete Springer Journals</source><creator>Bezaeva, N. S. ; Gattacceca, J. ; Rochette, P. ; Sadykov, R. A.</creator><creatorcontrib>Bezaeva, N. S. ; Gattacceca, J. ; Rochette, P. ; Sadykov, R. A.</creatorcontrib><description>We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” alloy (NiCrAl) together with a liquid pressure transmitting medium PES-1 (polyethylsiloxane) to ensure purely hydrostatic pressure. This technique allowed measuring magnetic remanence of investigated samples directly under pressure as well as upon decompression. Pressure was always applied in near-zero magnetic field (&lt;5 μT). The experiments revealed that under hydrostatic pressure up to 1.8 GPa, ordinary chondrites lose up to 51% of their initial saturation isothermal remanent magnetization. Pressure demagnetization degree is proportional to the coercivity of remanence ( B cr ), which reflects the magnetic hardness of the samples. This is similar to what was observed for ferrimagnetic minerals others than Fe–Ni alloys. In addition, pressure of 1.8 GPa does not demagnetize samples with B cr &gt; 80 mT, i.e. whose main metal phase is tetrataenite (Fe 0.5 Ni 0.5 ). This study gives an overview of pressure sensitivity of ordinary chondrites up to 1.8 GPa and has implications for extraterrestrial paleomagnetism as it can help to interpret remanent magnetization of ordinary chondrites that suffered shock metamorphism processes.</description><identifier>ISSN: 0016-7029</identifier><identifier>EISSN: 1556-1968</identifier><identifier>DOI: 10.1134/S0016702922050032</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alloys ; Chondrites ; Coercivity ; Cylinders ; Decompression ; Demagnetization ; Earth and Environmental Science ; Earth Sciences ; Extraterrestrial materials ; Ferrous alloys ; Geochemistry ; Geophysics ; Heavy metals ; Hydrostatic pressure ; Iron ; Magnetic field ; Magnetic fields ; Magnetic properties ; Magnetism ; Magnetization ; Metamorphism ; Meteorites ; Minerals ; Nickel ; Palaeomagnetism ; Paleomagnetism ; Pressure ; Pressure cells ; Remanence ; Remanent magnetization ; Saturation ; Sciences of the Universe ; Shock metamorphism ; Water hardness</subject><ispartof>Geochemistry international, 2022-05, Vol.60 (5), p.421-429</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 0016-7029, Geochemistry International, 2022, Vol. 60, No. 5, pp. 421–429. © Pleiades Publishing, Ltd., 2022. ISSN 0016-7029, Geochemistry International, 2022. © Pleiades Publishing, Ltd., 2022.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a407t-56ff779e23be5cb6547c805e1462f5e58cbd5ed274ec51ce0c576b7b193fc3db3</cites><orcidid>0000-0002-1639-7140 ; 0000-0002-7362-0660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016702922050032$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016702922050032$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03565123$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezaeva, N. S.</creatorcontrib><creatorcontrib>Gattacceca, J.</creatorcontrib><creatorcontrib>Rochette, P.</creatorcontrib><creatorcontrib>Sadykov, R. A.</creatorcontrib><title>Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa</title><title>Geochemistry international</title><addtitle>Geochem. Int</addtitle><description>We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” alloy (NiCrAl) together with a liquid pressure transmitting medium PES-1 (polyethylsiloxane) to ensure purely hydrostatic pressure. This technique allowed measuring magnetic remanence of investigated samples directly under pressure as well as upon decompression. Pressure was always applied in near-zero magnetic field (&lt;5 μT). The experiments revealed that under hydrostatic pressure up to 1.8 GPa, ordinary chondrites lose up to 51% of their initial saturation isothermal remanent magnetization. Pressure demagnetization degree is proportional to the coercivity of remanence ( B cr ), which reflects the magnetic hardness of the samples. This is similar to what was observed for ferrimagnetic minerals others than Fe–Ni alloys. In addition, pressure of 1.8 GPa does not demagnetize samples with B cr &gt; 80 mT, i.e. whose main metal phase is tetrataenite (Fe 0.5 Ni 0.5 ). This study gives an overview of pressure sensitivity of ordinary chondrites up to 1.8 GPa and has implications for extraterrestrial paleomagnetism as it can help to interpret remanent magnetization of ordinary chondrites that suffered shock metamorphism processes.</description><subject>Alloys</subject><subject>Chondrites</subject><subject>Coercivity</subject><subject>Cylinders</subject><subject>Decompression</subject><subject>Demagnetization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Extraterrestrial materials</subject><subject>Ferrous alloys</subject><subject>Geochemistry</subject><subject>Geophysics</subject><subject>Heavy metals</subject><subject>Hydrostatic pressure</subject><subject>Iron</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Metamorphism</subject><subject>Meteorites</subject><subject>Minerals</subject><subject>Nickel</subject><subject>Palaeomagnetism</subject><subject>Paleomagnetism</subject><subject>Pressure</subject><subject>Pressure cells</subject><subject>Remanence</subject><subject>Remanent magnetization</subject><subject>Saturation</subject><subject>Sciences of the Universe</subject><subject>Shock metamorphism</subject><subject>Water hardness</subject><issn>0016-7029</issn><issn>1556-1968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rGzEQhkVpoG7SH9CboKce1tW3do_GbeKCwYEmZ6HVjhwFW3Kl3UL666tlS3soZQ6CmecdHjQIvadkTSkXn74RQpUmrGOMSEI4e4VWVErV0E61r9FqHjfz_A16W8ozIULwTq_Q4TOc7THCGH7aMaSIk8eHPIRo8wvePqU45DBCwVMcIOPdy5BTGSvp8H2GUqYMeLrgMWG6bvHdvb1BV96eCrz7_V6jx9svD9tdsz_cfd1u9o0VRI-NVN5r3QHjPUjXKym0a4kEKhTzEmTr-kHCwLQAJ6kD4qRWve5px73jQ8-v0cdl75M9mUsO5-prkg1mt9mbuUe4VJIy_oNW9sPCXnL6PkEZzXOacqx6hikl2lZQwSq1XqijPYEJ0acxW1drgHNwKYIPtb_RZJZlmtQAXQKu_knJ4P94UGLmo5h_jlIzbMmUysYj5L8q_w_9ArTCi9s</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Bezaeva, N. S.</creator><creator>Gattacceca, J.</creator><creator>Rochette, P.</creator><creator>Sadykov, R. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1639-7140</orcidid><orcidid>https://orcid.org/0000-0002-7362-0660</orcidid></search><sort><creationdate>20220501</creationdate><title>Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa</title><author>Bezaeva, N. S. ; Gattacceca, J. ; Rochette, P. ; Sadykov, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a407t-56ff779e23be5cb6547c805e1462f5e58cbd5ed274ec51ce0c576b7b193fc3db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Chondrites</topic><topic>Coercivity</topic><topic>Cylinders</topic><topic>Decompression</topic><topic>Demagnetization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Extraterrestrial materials</topic><topic>Ferrous alloys</topic><topic>Geochemistry</topic><topic>Geophysics</topic><topic>Heavy metals</topic><topic>Hydrostatic pressure</topic><topic>Iron</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Metamorphism</topic><topic>Meteorites</topic><topic>Minerals</topic><topic>Nickel</topic><topic>Palaeomagnetism</topic><topic>Paleomagnetism</topic><topic>Pressure</topic><topic>Pressure cells</topic><topic>Remanence</topic><topic>Remanent magnetization</topic><topic>Saturation</topic><topic>Sciences of the Universe</topic><topic>Shock metamorphism</topic><topic>Water hardness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezaeva, N. S.</creatorcontrib><creatorcontrib>Gattacceca, J.</creatorcontrib><creatorcontrib>Rochette, P.</creatorcontrib><creatorcontrib>Sadykov, R. A.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geochemistry international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezaeva, N. S.</au><au>Gattacceca, J.</au><au>Rochette, P.</au><au>Sadykov, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa</atitle><jtitle>Geochemistry international</jtitle><stitle>Geochem. Int</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>60</volume><issue>5</issue><spage>421</spage><epage>429</epage><pages>421-429</pages><issn>0016-7029</issn><eissn>1556-1968</eissn><abstract>We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” alloy (NiCrAl) together with a liquid pressure transmitting medium PES-1 (polyethylsiloxane) to ensure purely hydrostatic pressure. This technique allowed measuring magnetic remanence of investigated samples directly under pressure as well as upon decompression. Pressure was always applied in near-zero magnetic field (&lt;5 μT). The experiments revealed that under hydrostatic pressure up to 1.8 GPa, ordinary chondrites lose up to 51% of their initial saturation isothermal remanent magnetization. Pressure demagnetization degree is proportional to the coercivity of remanence ( B cr ), which reflects the magnetic hardness of the samples. This is similar to what was observed for ferrimagnetic minerals others than Fe–Ni alloys. In addition, pressure of 1.8 GPa does not demagnetize samples with B cr &gt; 80 mT, i.e. whose main metal phase is tetrataenite (Fe 0.5 Ni 0.5 ). This study gives an overview of pressure sensitivity of ordinary chondrites up to 1.8 GPa and has implications for extraterrestrial paleomagnetism as it can help to interpret remanent magnetization of ordinary chondrites that suffered shock metamorphism processes.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016702922050032</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1639-7140</orcidid><orcidid>https://orcid.org/0000-0002-7362-0660</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-7029
ispartof Geochemistry international, 2022-05, Vol.60 (5), p.421-429
issn 0016-7029
1556-1968
language eng
recordid cdi_hal_primary_oai_HAL_hal_03565123v1
source Springer Nature - Complete Springer Journals
subjects Alloys
Chondrites
Coercivity
Cylinders
Decompression
Demagnetization
Earth and Environmental Science
Earth Sciences
Extraterrestrial materials
Ferrous alloys
Geochemistry
Geophysics
Heavy metals
Hydrostatic pressure
Iron
Magnetic field
Magnetic fields
Magnetic properties
Magnetism
Magnetization
Metamorphism
Meteorites
Minerals
Nickel
Palaeomagnetism
Paleomagnetism
Pressure
Pressure cells
Remanence
Remanent magnetization
Saturation
Sciences of the Universe
Shock metamorphism
Water hardness
title Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demagnetization%20of%20Ordinary%20Chondrites%20under%20Hydrostatic%20Pressure%20up%20to%201.8%20GPa&rft.jtitle=Geochemistry%20international&rft.au=Bezaeva,%20N.%20S.&rft.date=2022-05-01&rft.volume=60&rft.issue=5&rft.spage=421&rft.epage=429&rft.pages=421-429&rft.issn=0016-7029&rft.eissn=1556-1968&rft_id=info:doi/10.1134/S0016702922050032&rft_dat=%3Cgale_hal_p%3EA706547270%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664884142&rft_id=info:pmid/&rft_galeid=A706547270&rfr_iscdi=true