Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa
We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” a...
Gespeichert in:
Veröffentlicht in: | Geochemistry international 2022-05, Vol.60 (5), p.421-429 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 429 |
---|---|
container_issue | 5 |
container_start_page | 421 |
container_title | Geochemistry international |
container_volume | 60 |
creator | Bezaeva, N. S. Gattacceca, J. Rochette, P. Sadykov, R. A. |
description | We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” alloy (NiCrAl) together with a liquid pressure transmitting medium PES-1 (polyethylsiloxane) to ensure purely hydrostatic pressure. This technique allowed measuring magnetic remanence of investigated samples directly under pressure as well as upon decompression. Pressure was always applied in near-zero magnetic field ( 80 mT, i.e. whose main metal phase is tetrataenite (Fe
0.5
Ni
0.5
). This study gives an overview of pressure sensitivity of ordinary chondrites up to 1.8 GPa and has implications for extraterrestrial paleomagnetism as it can help to interpret remanent magnetization of ordinary chondrites that suffered shock metamorphism processes. |
doi_str_mv | 10.1134/S0016702922050032 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03565123v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706547270</galeid><sourcerecordid>A706547270</sourcerecordid><originalsourceid>FETCH-LOGICAL-a407t-56ff779e23be5cb6547c805e1462f5e58cbd5ed274ec51ce0c576b7b193fc3db3</originalsourceid><addsrcrecordid>eNp1kU1rGzEQhkVpoG7SH9CboKce1tW3do_GbeKCwYEmZ6HVjhwFW3Kl3UL666tlS3soZQ6CmecdHjQIvadkTSkXn74RQpUmrGOMSEI4e4VWVErV0E61r9FqHjfz_A16W8ozIULwTq_Q4TOc7THCGH7aMaSIk8eHPIRo8wvePqU45DBCwVMcIOPdy5BTGSvp8H2GUqYMeLrgMWG6bvHdvb1BV96eCrz7_V6jx9svD9tdsz_cfd1u9o0VRI-NVN5r3QHjPUjXKym0a4kEKhTzEmTr-kHCwLQAJ6kD4qRWve5px73jQ8-v0cdl75M9mUsO5-prkg1mt9mbuUe4VJIy_oNW9sPCXnL6PkEZzXOacqx6hikl2lZQwSq1XqijPYEJ0acxW1drgHNwKYIPtb_RZJZlmtQAXQKu_knJ4P94UGLmo5h_jlIzbMmUysYj5L8q_w_9ArTCi9s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664884142</pqid></control><display><type>article</type><title>Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa</title><source>Springer Nature - Complete Springer Journals</source><creator>Bezaeva, N. S. ; Gattacceca, J. ; Rochette, P. ; Sadykov, R. A.</creator><creatorcontrib>Bezaeva, N. S. ; Gattacceca, J. ; Rochette, P. ; Sadykov, R. A.</creatorcontrib><description>We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” alloy (NiCrAl) together with a liquid pressure transmitting medium PES-1 (polyethylsiloxane) to ensure purely hydrostatic pressure. This technique allowed measuring magnetic remanence of investigated samples directly under pressure as well as upon decompression. Pressure was always applied in near-zero magnetic field (<5 μT). The experiments revealed that under hydrostatic pressure up to 1.8 GPa, ordinary chondrites lose up to 51% of their initial saturation isothermal remanent magnetization. Pressure demagnetization degree is proportional to the coercivity of remanence (
B
cr
), which reflects the magnetic hardness of the samples. This is similar to what was observed for ferrimagnetic minerals others than Fe–Ni alloys. In addition, pressure of 1.8 GPa does not demagnetize samples with
B
cr
> 80 mT, i.e. whose main metal phase is tetrataenite (Fe
0.5
Ni
0.5
). This study gives an overview of pressure sensitivity of ordinary chondrites up to 1.8 GPa and has implications for extraterrestrial paleomagnetism as it can help to interpret remanent magnetization of ordinary chondrites that suffered shock metamorphism processes.</description><identifier>ISSN: 0016-7029</identifier><identifier>EISSN: 1556-1968</identifier><identifier>DOI: 10.1134/S0016702922050032</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alloys ; Chondrites ; Coercivity ; Cylinders ; Decompression ; Demagnetization ; Earth and Environmental Science ; Earth Sciences ; Extraterrestrial materials ; Ferrous alloys ; Geochemistry ; Geophysics ; Heavy metals ; Hydrostatic pressure ; Iron ; Magnetic field ; Magnetic fields ; Magnetic properties ; Magnetism ; Magnetization ; Metamorphism ; Meteorites ; Minerals ; Nickel ; Palaeomagnetism ; Paleomagnetism ; Pressure ; Pressure cells ; Remanence ; Remanent magnetization ; Saturation ; Sciences of the Universe ; Shock metamorphism ; Water hardness</subject><ispartof>Geochemistry international, 2022-05, Vol.60 (5), p.421-429</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 0016-7029, Geochemistry International, 2022, Vol. 60, No. 5, pp. 421–429. © Pleiades Publishing, Ltd., 2022. ISSN 0016-7029, Geochemistry International, 2022. © Pleiades Publishing, Ltd., 2022.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a407t-56ff779e23be5cb6547c805e1462f5e58cbd5ed274ec51ce0c576b7b193fc3db3</cites><orcidid>0000-0002-1639-7140 ; 0000-0002-7362-0660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016702922050032$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016702922050032$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03565123$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezaeva, N. S.</creatorcontrib><creatorcontrib>Gattacceca, J.</creatorcontrib><creatorcontrib>Rochette, P.</creatorcontrib><creatorcontrib>Sadykov, R. A.</creatorcontrib><title>Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa</title><title>Geochemistry international</title><addtitle>Geochem. Int</addtitle><description>We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” alloy (NiCrAl) together with a liquid pressure transmitting medium PES-1 (polyethylsiloxane) to ensure purely hydrostatic pressure. This technique allowed measuring magnetic remanence of investigated samples directly under pressure as well as upon decompression. Pressure was always applied in near-zero magnetic field (<5 μT). The experiments revealed that under hydrostatic pressure up to 1.8 GPa, ordinary chondrites lose up to 51% of their initial saturation isothermal remanent magnetization. Pressure demagnetization degree is proportional to the coercivity of remanence (
B
cr
), which reflects the magnetic hardness of the samples. This is similar to what was observed for ferrimagnetic minerals others than Fe–Ni alloys. In addition, pressure of 1.8 GPa does not demagnetize samples with
B
cr
> 80 mT, i.e. whose main metal phase is tetrataenite (Fe
0.5
Ni
0.5
). This study gives an overview of pressure sensitivity of ordinary chondrites up to 1.8 GPa and has implications for extraterrestrial paleomagnetism as it can help to interpret remanent magnetization of ordinary chondrites that suffered shock metamorphism processes.</description><subject>Alloys</subject><subject>Chondrites</subject><subject>Coercivity</subject><subject>Cylinders</subject><subject>Decompression</subject><subject>Demagnetization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Extraterrestrial materials</subject><subject>Ferrous alloys</subject><subject>Geochemistry</subject><subject>Geophysics</subject><subject>Heavy metals</subject><subject>Hydrostatic pressure</subject><subject>Iron</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Metamorphism</subject><subject>Meteorites</subject><subject>Minerals</subject><subject>Nickel</subject><subject>Palaeomagnetism</subject><subject>Paleomagnetism</subject><subject>Pressure</subject><subject>Pressure cells</subject><subject>Remanence</subject><subject>Remanent magnetization</subject><subject>Saturation</subject><subject>Sciences of the Universe</subject><subject>Shock metamorphism</subject><subject>Water hardness</subject><issn>0016-7029</issn><issn>1556-1968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rGzEQhkVpoG7SH9CboKce1tW3do_GbeKCwYEmZ6HVjhwFW3Kl3UL666tlS3soZQ6CmecdHjQIvadkTSkXn74RQpUmrGOMSEI4e4VWVErV0E61r9FqHjfz_A16W8ozIULwTq_Q4TOc7THCGH7aMaSIk8eHPIRo8wvePqU45DBCwVMcIOPdy5BTGSvp8H2GUqYMeLrgMWG6bvHdvb1BV96eCrz7_V6jx9svD9tdsz_cfd1u9o0VRI-NVN5r3QHjPUjXKym0a4kEKhTzEmTr-kHCwLQAJ6kD4qRWve5px73jQ8-v0cdl75M9mUsO5-prkg1mt9mbuUe4VJIy_oNW9sPCXnL6PkEZzXOacqx6hikl2lZQwSq1XqijPYEJ0acxW1drgHNwKYIPtb_RZJZlmtQAXQKu_knJ4P94UGLmo5h_jlIzbMmUysYj5L8q_w_9ArTCi9s</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Bezaeva, N. S.</creator><creator>Gattacceca, J.</creator><creator>Rochette, P.</creator><creator>Sadykov, R. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1639-7140</orcidid><orcidid>https://orcid.org/0000-0002-7362-0660</orcidid></search><sort><creationdate>20220501</creationdate><title>Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa</title><author>Bezaeva, N. S. ; Gattacceca, J. ; Rochette, P. ; Sadykov, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a407t-56ff779e23be5cb6547c805e1462f5e58cbd5ed274ec51ce0c576b7b193fc3db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Chondrites</topic><topic>Coercivity</topic><topic>Cylinders</topic><topic>Decompression</topic><topic>Demagnetization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Extraterrestrial materials</topic><topic>Ferrous alloys</topic><topic>Geochemistry</topic><topic>Geophysics</topic><topic>Heavy metals</topic><topic>Hydrostatic pressure</topic><topic>Iron</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Metamorphism</topic><topic>Meteorites</topic><topic>Minerals</topic><topic>Nickel</topic><topic>Palaeomagnetism</topic><topic>Paleomagnetism</topic><topic>Pressure</topic><topic>Pressure cells</topic><topic>Remanence</topic><topic>Remanent magnetization</topic><topic>Saturation</topic><topic>Sciences of the Universe</topic><topic>Shock metamorphism</topic><topic>Water hardness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezaeva, N. S.</creatorcontrib><creatorcontrib>Gattacceca, J.</creatorcontrib><creatorcontrib>Rochette, P.</creatorcontrib><creatorcontrib>Sadykov, R. A.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geochemistry international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezaeva, N. S.</au><au>Gattacceca, J.</au><au>Rochette, P.</au><au>Sadykov, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa</atitle><jtitle>Geochemistry international</jtitle><stitle>Geochem. Int</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>60</volume><issue>5</issue><spage>421</spage><epage>429</epage><pages>421-429</pages><issn>0016-7029</issn><eissn>1556-1968</eissn><abstract>We present here the results of hydrostatic pressure demagnetization experiments up to 1.8 GPa on LL, L and H ordinary chondrites—the most common type of meteorites with Fe-Ni alloys being the main magnetic carrier. We used a non-magnetic high-pressure cell of piston-cylinder type made of “Russian” alloy (NiCrAl) together with a liquid pressure transmitting medium PES-1 (polyethylsiloxane) to ensure purely hydrostatic pressure. This technique allowed measuring magnetic remanence of investigated samples directly under pressure as well as upon decompression. Pressure was always applied in near-zero magnetic field (<5 μT). The experiments revealed that under hydrostatic pressure up to 1.8 GPa, ordinary chondrites lose up to 51% of their initial saturation isothermal remanent magnetization. Pressure demagnetization degree is proportional to the coercivity of remanence (
B
cr
), which reflects the magnetic hardness of the samples. This is similar to what was observed for ferrimagnetic minerals others than Fe–Ni alloys. In addition, pressure of 1.8 GPa does not demagnetize samples with
B
cr
> 80 mT, i.e. whose main metal phase is tetrataenite (Fe
0.5
Ni
0.5
). This study gives an overview of pressure sensitivity of ordinary chondrites up to 1.8 GPa and has implications for extraterrestrial paleomagnetism as it can help to interpret remanent magnetization of ordinary chondrites that suffered shock metamorphism processes.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016702922050032</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1639-7140</orcidid><orcidid>https://orcid.org/0000-0002-7362-0660</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7029 |
ispartof | Geochemistry international, 2022-05, Vol.60 (5), p.421-429 |
issn | 0016-7029 1556-1968 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03565123v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Alloys Chondrites Coercivity Cylinders Decompression Demagnetization Earth and Environmental Science Earth Sciences Extraterrestrial materials Ferrous alloys Geochemistry Geophysics Heavy metals Hydrostatic pressure Iron Magnetic field Magnetic fields Magnetic properties Magnetism Magnetization Metamorphism Meteorites Minerals Nickel Palaeomagnetism Paleomagnetism Pressure Pressure cells Remanence Remanent magnetization Saturation Sciences of the Universe Shock metamorphism Water hardness |
title | Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demagnetization%20of%20Ordinary%20Chondrites%20under%20Hydrostatic%20Pressure%20up%20to%201.8%20GPa&rft.jtitle=Geochemistry%20international&rft.au=Bezaeva,%20N.%20S.&rft.date=2022-05-01&rft.volume=60&rft.issue=5&rft.spage=421&rft.epage=429&rft.pages=421-429&rft.issn=0016-7029&rft.eissn=1556-1968&rft_id=info:doi/10.1134/S0016702922050032&rft_dat=%3Cgale_hal_p%3EA706547270%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664884142&rft_id=info:pmid/&rft_galeid=A706547270&rfr_iscdi=true |