Well-Posedness Theory for a Nonconservative Burgers-Type System Arising in Dislocation Dynamics
In this work we study a system of nonconservative Burgers type in one space dimension, arising in modeling the dynamics of dislocation densities in crystals. Starting from physically relevant initial data that are of a special form, namely nondecreasing, periodic plus linear functions, we prove the...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2007-01, Vol.39 (3), p.965-986 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 986 |
---|---|
container_issue | 3 |
container_start_page | 965 |
container_title | SIAM journal on mathematical analysis |
container_volume | 39 |
creator | El Hajj, Ahmad |
description | In this work we study a system of nonconservative Burgers type in one space dimension, arising in modeling the dynamics of dislocation densities in crystals. Starting from physically relevant initial data that are of a special form, namely nondecreasing, periodic plus linear functions, we prove the global existence and uniqueness of a solution in $H^1_{loc}(\mathbb R\times[0,+\infty))$ that preserves the nature of the initial data. The approach is made by adding some viscosity to the system, obtaining energy estimates, and passing to the limit for vanishing viscosity. A comparison principle is shown for this system as well as an application in the case of the classical Burgers equation. |
doi_str_mv | 10.1137/060672170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03561544v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597211861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-307861ed8a21228831ca0e6ef4a81a3fbee35fb82a95422ae492dead871f27b83</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQQBdRsFYP_oPFm4fozG6S3Rxr_ahQVLDicdkmkzYlzdbdtJB_b0qlnmYYHo_hMXaNcIco1T2kkCqBCk7YACFLIoVJfMoGADKNMEY4ZxchrAAwjTMYMPNNdR19uEBFQyHw2ZKc73jpPLf8zTW5awL5nW2rHfGHrV-QD9Gs2xD_7EJLaz7yVaiaBa8a_liF2uU96vq9a-y6ysMlOyttHejqbw7Z1_PTbDyJpu8vr-PRNMpFBm0kQekUqdBWoBBaS8wtUEplbDVaWc6JZFLOtbBZEgthKc5EQbbQCkuh5loO2e3Bu7S12fhqbX1nnK3MZDQ1-xvIJO1TxDvs2ZsDu_HuZ0uhNSu39U3_nsmEzEQilPgX5t6F4Kk8WhHMPrU5ppa_RBdvqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923925272</pqid></control><display><type>article</type><title>Well-Posedness Theory for a Nonconservative Burgers-Type System Arising in Dislocation Dynamics</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>El Hajj, Ahmad</creator><creatorcontrib>El Hajj, Ahmad</creatorcontrib><description>In this work we study a system of nonconservative Burgers type in one space dimension, arising in modeling the dynamics of dislocation densities in crystals. Starting from physically relevant initial data that are of a special form, namely nondecreasing, periodic plus linear functions, we prove the global existence and uniqueness of a solution in $H^1_{loc}(\mathbb R\times[0,+\infty))$ that preserves the nature of the initial data. The approach is made by adding some viscosity to the system, obtaining energy estimates, and passing to the limit for vanishing viscosity. A comparison principle is shown for this system as well as an application in the case of the classical Burgers equation.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/060672170</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Eigenvalues ; Estimates ; Mathematics ; Viscosity</subject><ispartof>SIAM journal on mathematical analysis, 2007-01, Vol.39 (3), p.965-986</ispartof><rights>[Copyright] © 2007 Society for Industrial and Applied Mathematics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-307861ed8a21228831ca0e6ef4a81a3fbee35fb82a95422ae492dead871f27b83</citedby><cites>FETCH-LOGICAL-c290t-307861ed8a21228831ca0e6ef4a81a3fbee35fb82a95422ae492dead871f27b83</cites><orcidid>0000-0001-7106-7737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,3172,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03561544$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>El Hajj, Ahmad</creatorcontrib><title>Well-Posedness Theory for a Nonconservative Burgers-Type System Arising in Dislocation Dynamics</title><title>SIAM journal on mathematical analysis</title><description>In this work we study a system of nonconservative Burgers type in one space dimension, arising in modeling the dynamics of dislocation densities in crystals. Starting from physically relevant initial data that are of a special form, namely nondecreasing, periodic plus linear functions, we prove the global existence and uniqueness of a solution in $H^1_{loc}(\mathbb R\times[0,+\infty))$ that preserves the nature of the initial data. The approach is made by adding some viscosity to the system, obtaining energy estimates, and passing to the limit for vanishing viscosity. A comparison principle is shown for this system as well as an application in the case of the classical Burgers equation.</description><subject>Applied mathematics</subject><subject>Eigenvalues</subject><subject>Estimates</subject><subject>Mathematics</subject><subject>Viscosity</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkE1Lw0AQQBdRsFYP_oPFm4fozG6S3Rxr_ahQVLDicdkmkzYlzdbdtJB_b0qlnmYYHo_hMXaNcIco1T2kkCqBCk7YACFLIoVJfMoGADKNMEY4ZxchrAAwjTMYMPNNdR19uEBFQyHw2ZKc73jpPLf8zTW5awL5nW2rHfGHrV-QD9Gs2xD_7EJLaz7yVaiaBa8a_liF2uU96vq9a-y6ysMlOyttHejqbw7Z1_PTbDyJpu8vr-PRNMpFBm0kQekUqdBWoBBaS8wtUEplbDVaWc6JZFLOtbBZEgthKc5EQbbQCkuh5loO2e3Bu7S12fhqbX1nnK3MZDQ1-xvIJO1TxDvs2ZsDu_HuZ0uhNSu39U3_nsmEzEQilPgX5t6F4Kk8WhHMPrU5ppa_RBdvqA</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>El Hajj, Ahmad</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7106-7737</orcidid></search><sort><creationdate>200701</creationdate><title>Well-Posedness Theory for a Nonconservative Burgers-Type System Arising in Dislocation Dynamics</title><author>El Hajj, Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-307861ed8a21228831ca0e6ef4a81a3fbee35fb82a95422ae492dead871f27b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied mathematics</topic><topic>Eigenvalues</topic><topic>Estimates</topic><topic>Mathematics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Hajj, Ahmad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Hajj, Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-Posedness Theory for a Nonconservative Burgers-Type System Arising in Dislocation Dynamics</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2007-01</date><risdate>2007</risdate><volume>39</volume><issue>3</issue><spage>965</spage><epage>986</epage><pages>965-986</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>In this work we study a system of nonconservative Burgers type in one space dimension, arising in modeling the dynamics of dislocation densities in crystals. Starting from physically relevant initial data that are of a special form, namely nondecreasing, periodic plus linear functions, we prove the global existence and uniqueness of a solution in $H^1_{loc}(\mathbb R\times[0,+\infty))$ that preserves the nature of the initial data. The approach is made by adding some viscosity to the system, obtaining energy estimates, and passing to the limit for vanishing viscosity. A comparison principle is shown for this system as well as an application in the case of the classical Burgers equation.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/060672170</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7106-7737</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2007-01, Vol.39 (3), p.965-986 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03561544v1 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Applied mathematics Eigenvalues Estimates Mathematics Viscosity |
title | Well-Posedness Theory for a Nonconservative Burgers-Type System Arising in Dislocation Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-Posedness%20Theory%20for%20a%20Nonconservative%20Burgers-Type%20System%20Arising%20in%20Dislocation%20Dynamics&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=El%20Hajj,%20Ahmad&rft.date=2007-01&rft.volume=39&rft.issue=3&rft.spage=965&rft.epage=986&rft.pages=965-986&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/060672170&rft_dat=%3Cproquest_hal_p%3E2597211861%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923925272&rft_id=info:pmid/&rfr_iscdi=true |