Well-Posedness Theory for a Nonconservative Burgers-Type System Arising in Dislocation Dynamics
In this work we study a system of nonconservative Burgers type in one space dimension, arising in modeling the dynamics of dislocation densities in crystals. Starting from physically relevant initial data that are of a special form, namely nondecreasing, periodic plus linear functions, we prove the...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2007-01, Vol.39 (3), p.965-986 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we study a system of nonconservative Burgers type in one space dimension, arising in modeling the dynamics of dislocation densities in crystals. Starting from physically relevant initial data that are of a special form, namely nondecreasing, periodic plus linear functions, we prove the global existence and uniqueness of a solution in $H^1_{loc}(\mathbb R\times[0,+\infty))$ that preserves the nature of the initial data. The approach is made by adding some viscosity to the system, obtaining energy estimates, and passing to the limit for vanishing viscosity. A comparison principle is shown for this system as well as an application in the case of the classical Burgers equation. |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/060672170 |