Well-Posedness Theory for a Nonconservative Burgers-Type System Arising in Dislocation Dynamics

In this work we study a system of nonconservative Burgers type in one space dimension, arising in modeling the dynamics of dislocation densities in crystals. Starting from physically relevant initial data that are of a special form, namely nondecreasing, periodic plus linear functions, we prove the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2007-01, Vol.39 (3), p.965-986
1. Verfasser: El Hajj, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we study a system of nonconservative Burgers type in one space dimension, arising in modeling the dynamics of dislocation densities in crystals. Starting from physically relevant initial data that are of a special form, namely nondecreasing, periodic plus linear functions, we prove the global existence and uniqueness of a solution in $H^1_{loc}(\mathbb R\times[0,+\infty))$ that preserves the nature of the initial data. The approach is made by adding some viscosity to the system, obtaining energy estimates, and passing to the limit for vanishing viscosity. A comparison principle is shown for this system as well as an application in the case of the classical Burgers equation.
ISSN:0036-1410
1095-7154
DOI:10.1137/060672170