Experimental investigation of high strain-rate, large-scale crack bridging behaviour of z-pin reinforced tapered laminates

Significant research exists on small-scale, quasi-static failure behaviour of Z-pinned composite laminates. However, little work has been conducted on large-scale, high strain-rate behaviour of Z-pinned composites at structural level. Small-scale testing is often at an insufficient scale to invoke t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2022-04, Vol.155, p.106825, Article 106825
Hauptverfasser: Cochrane, A.D., Serra, J., Lander, J.K., Böhm, H., Wollmann, T., Hornig, A., Gude, M., Partridge, I.K., Hallett, S.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Significant research exists on small-scale, quasi-static failure behaviour of Z-pinned composite laminates. However, little work has been conducted on large-scale, high strain-rate behaviour of Z-pinned composites at structural level. Small-scale testing is often at an insufficient scale to invoke the full crack bridging effects of the Z-pins. Full-scale testing on real components involves large length scales, complex geometries and resulting failure mechanisms that make it difficult to identify the specific effect of Z-pins on the component failure behaviour. A novel cantilever soft body impact test has been developed which is of sufficient scale to invoke large-scale delamination, such that behaviour in Z-pin arrays at high strain-rates can be studied. Laminates containing Z-pin arrays were subjected to soft-body gelatine impact in high-speed light gas-gun tests. Detailed fractographic investigation was carried out to investigate the dynamic failure behaviour of Z-pins at the microscopic scale.
ISSN:1359-835X
1878-5840
DOI:10.1016/j.compositesa.2022.106825