Notes on Real Interpolation of Operator Lp-Spaces
Let ℳ be a semifinite von Neumann algebra. We equip the associated non-commutative L p -spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 < p < ∞ let L p , p ( ℳ ) = ( L ∞ ( ℳ ) , L 1 ( ℳ ) ) 1 p , p be equipped with the...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2021-11, Vol.41 (6), p.2173-2182 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2182 |
---|---|
container_issue | 6 |
container_start_page | 2173 |
container_title | Acta mathematica scientia |
container_volume | 41 |
creator | Junge, Marius Xu, Quanhua |
description | Let
ℳ
be a semifinite von Neumann algebra. We equip the associated non-commutative
L
p
-spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 <
p
< ∞ let
L
p
,
p
(
ℳ
)
=
(
L
∞
(
ℳ
)
,
L
1
(
ℳ
)
)
1
p
,
p
be equipped with the operator space structure via real interpolation as defined by the second named author (J. Funct. Anal. 139 (1996), 500-539). We show that
L
p
,
p
(
ℳ
)
=
L
p
(
ℳ
)
completely isomorphically if and only if
ℳ
is finite dimensional. This solves in the negative the three problems left open in the quoted work of the second author.
We also show that for 1 <
p
< ∞ and 1 ≤
q
≤ ∞ with
p
≠
q
(
L
∞
(
ℳ
;
ℓ
q
)
,
L
1
(
ℳ
;
ℓ
q
)
)
1
p
,
p
=
L
p
(
ℳ
;
ℓ
q
)
with equivalent norms, i.e., at the Banach space level if and only if
ℳ
is isomorphic, as a Banach space, to a commutative von Neumann algebra.
Our third result concerns the following inequality:
‖
(
∑
i
x
i
q
)
1
q
‖
L
p
(
ℳ
)
≤
‖
(
∑
i
x
i
r
)
1
r
‖
L
p
(
ℳ
)
for any finite sequence
(
x
i
)
⊂
L
p
+
(
ℳ
)
, where 0 <
r
<
q
< ∞ and 0 <
p
≤ ∞. If
ℳ
is not isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality holds if and only if
p
≥
r
. |
doi_str_mv | 10.1007/s10473-021-0622-2 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03541798v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03541798v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2372-a0dbe60a28810ab69247f98bce331ddad65047a91291c264c64fafa4174a0f293</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwAbj1yiFgu23aHqcJ2KSKSfw5R16bwKbSVElB4tuTqRNHTras9-znnxDXCLcIUNwFhKxIJRBKUESSTsQM84JkBWVxKmZAeewV0Lm4CGEPgIpUNhP45EYTEtcnz4a7ZN2Pxg-u43EXR84mm8F4Hp1P6kG-DNyYcCnOLHfBXB3rXLw93L8uV7LePK6Xi1o2lMa7DO3WKGAqSwTeqoqywlbltjFpim3LrcpjYq6QKmxilEZlli1nWGQMlqp0Lm6mvR_c6cHvPtn_aMc7vVrU-jCDNI_qqvzGqMVJ23gXgjf2z4CgD3z0xEdHPvrAR1P00OQJUdu_G6_37sv38aV_TL_ZEWWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Notes on Real Interpolation of Operator Lp-Spaces</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Junge, Marius ; Xu, Quanhua</creator><creatorcontrib>Junge, Marius ; Xu, Quanhua</creatorcontrib><description><![CDATA[Let
ℳ
be a semifinite von Neumann algebra. We equip the associated non-commutative
L
p
-spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 <
p
< ∞ let
L
p
,
p
(
ℳ
)
=
(
L
∞
(
ℳ
)
,
L
1
(
ℳ
)
)
1
p
,
p
be equipped with the operator space structure via real interpolation as defined by the second named author (J. Funct. Anal. 139 (1996), 500-539). We show that
L
p
,
p
(
ℳ
)
=
L
p
(
ℳ
)
completely isomorphically if and only if
ℳ
is finite dimensional. This solves in the negative the three problems left open in the quoted work of the second author.
We also show that for 1 <
p
< ∞ and 1 ≤
q
≤ ∞ with
p
≠
q
(
L
∞
(
ℳ
;
ℓ
q
)
,
L
1
(
ℳ
;
ℓ
q
)
)
1
p
,
p
=
L
p
(
ℳ
;
ℓ
q
)
with equivalent norms, i.e., at the Banach space level if and only if
ℳ
is isomorphic, as a Banach space, to a commutative von Neumann algebra.
Our third result concerns the following inequality:
‖
(
∑
i
x
i
q
)
1
q
‖
L
p
(
ℳ
)
≤
‖
(
∑
i
x
i
r
)
1
r
‖
L
p
(
ℳ
)
for any finite sequence
(
x
i
)
⊂
L
p
+
(
ℳ
)
, where 0 <
r
<
q
< ∞ and 0 <
p
≤ ∞. If
ℳ
is not isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality holds if and only if
p
≥
r
.]]></description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1007/s10473-021-0622-2</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Analysis ; Functional Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica scientia, 2021-11, Vol.41 (6), p.2173-2182</ispartof><rights>Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2372-a0dbe60a28810ab69247f98bce331ddad65047a91291c264c64fafa4174a0f293</citedby><cites>FETCH-LOGICAL-c2372-a0dbe60a28810ab69247f98bce331ddad65047a91291c264c64fafa4174a0f293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10473-021-0622-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10473-021-0622-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03541798$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Junge, Marius</creatorcontrib><creatorcontrib>Xu, Quanhua</creatorcontrib><title>Notes on Real Interpolation of Operator Lp-Spaces</title><title>Acta mathematica scientia</title><addtitle>Acta Math Sci</addtitle><description><![CDATA[Let
ℳ
be a semifinite von Neumann algebra. We equip the associated non-commutative
L
p
-spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 <
p
< ∞ let
L
p
,
p
(
ℳ
)
=
(
L
∞
(
ℳ
)
,
L
1
(
ℳ
)
)
1
p
,
p
be equipped with the operator space structure via real interpolation as defined by the second named author (J. Funct. Anal. 139 (1996), 500-539). We show that
L
p
,
p
(
ℳ
)
=
L
p
(
ℳ
)
completely isomorphically if and only if
ℳ
is finite dimensional. This solves in the negative the three problems left open in the quoted work of the second author.
We also show that for 1 <
p
< ∞ and 1 ≤
q
≤ ∞ with
p
≠
q
(
L
∞
(
ℳ
;
ℓ
q
)
,
L
1
(
ℳ
;
ℓ
q
)
)
1
p
,
p
=
L
p
(
ℳ
;
ℓ
q
)
with equivalent norms, i.e., at the Banach space level if and only if
ℳ
is isomorphic, as a Banach space, to a commutative von Neumann algebra.
Our third result concerns the following inequality:
‖
(
∑
i
x
i
q
)
1
q
‖
L
p
(
ℳ
)
≤
‖
(
∑
i
x
i
r
)
1
r
‖
L
p
(
ℳ
)
for any finite sequence
(
x
i
)
⊂
L
p
+
(
ℳ
)
, where 0 <
r
<
q
< ∞ and 0 <
p
≤ ∞. If
ℳ
is not isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality holds if and only if
p
≥
r
.]]></description><subject>Analysis</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwAbj1yiFgu23aHqcJ2KSKSfw5R16bwKbSVElB4tuTqRNHTras9-znnxDXCLcIUNwFhKxIJRBKUESSTsQM84JkBWVxKmZAeewV0Lm4CGEPgIpUNhP45EYTEtcnz4a7ZN2Pxg-u43EXR84mm8F4Hp1P6kG-DNyYcCnOLHfBXB3rXLw93L8uV7LePK6Xi1o2lMa7DO3WKGAqSwTeqoqywlbltjFpim3LrcpjYq6QKmxilEZlli1nWGQMlqp0Lm6mvR_c6cHvPtn_aMc7vVrU-jCDNI_qqvzGqMVJ23gXgjf2z4CgD3z0xEdHPvrAR1P00OQJUdu_G6_37sv38aV_TL_ZEWWo</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Junge, Marius</creator><creator>Xu, Quanhua</creator><general>Springer Singapore</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20211101</creationdate><title>Notes on Real Interpolation of Operator Lp-Spaces</title><author>Junge, Marius ; Xu, Quanhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2372-a0dbe60a28810ab69247f98bce331ddad65047a91291c264c64fafa4174a0f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Junge, Marius</creatorcontrib><creatorcontrib>Xu, Quanhua</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Junge, Marius</au><au>Xu, Quanhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notes on Real Interpolation of Operator Lp-Spaces</atitle><jtitle>Acta mathematica scientia</jtitle><stitle>Acta Math Sci</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>41</volume><issue>6</issue><spage>2173</spage><epage>2182</epage><pages>2173-2182</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract><![CDATA[Let
ℳ
be a semifinite von Neumann algebra. We equip the associated non-commutative
L
p
-spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 <
p
< ∞ let
L
p
,
p
(
ℳ
)
=
(
L
∞
(
ℳ
)
,
L
1
(
ℳ
)
)
1
p
,
p
be equipped with the operator space structure via real interpolation as defined by the second named author (J. Funct. Anal. 139 (1996), 500-539). We show that
L
p
,
p
(
ℳ
)
=
L
p
(
ℳ
)
completely isomorphically if and only if
ℳ
is finite dimensional. This solves in the negative the three problems left open in the quoted work of the second author.
We also show that for 1 <
p
< ∞ and 1 ≤
q
≤ ∞ with
p
≠
q
(
L
∞
(
ℳ
;
ℓ
q
)
,
L
1
(
ℳ
;
ℓ
q
)
)
1
p
,
p
=
L
p
(
ℳ
;
ℓ
q
)
with equivalent norms, i.e., at the Banach space level if and only if
ℳ
is isomorphic, as a Banach space, to a commutative von Neumann algebra.
Our third result concerns the following inequality:
‖
(
∑
i
x
i
q
)
1
q
‖
L
p
(
ℳ
)
≤
‖
(
∑
i
x
i
r
)
1
r
‖
L
p
(
ℳ
)
for any finite sequence
(
x
i
)
⊂
L
p
+
(
ℳ
)
, where 0 <
r
<
q
< ∞ and 0 <
p
≤ ∞. If
ℳ
is not isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality holds if and only if
p
≥
r
.]]></abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s10473-021-0622-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2021-11, Vol.41 (6), p.2173-2182 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03541798v1 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Analysis Functional Analysis Mathematics Mathematics and Statistics |
title | Notes on Real Interpolation of Operator Lp-Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notes%20on%20Real%20Interpolation%20of%20Operator%20Lp-Spaces&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Junge,%20Marius&rft.date=2021-11-01&rft.volume=41&rft.issue=6&rft.spage=2173&rft.epage=2182&rft.pages=2173-2182&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1007/s10473-021-0622-2&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03541798v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |