Notes on Real Interpolation of Operator Lp-Spaces

Let ℳ be a semifinite von Neumann algebra. We equip the associated non-commutative L p -spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 < p < ∞ let L p , p ( ℳ ) = ( L ∞ ( ℳ ) , L 1 ( ℳ ) ) 1 p , p be equipped with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2021-11, Vol.41 (6), p.2173-2182
Hauptverfasser: Junge, Marius, Xu, Quanhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2182
container_issue 6
container_start_page 2173
container_title Acta mathematica scientia
container_volume 41
creator Junge, Marius
Xu, Quanhua
description Let ℳ be a semifinite von Neumann algebra. We equip the associated non-commutative L p -spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 < p < ∞ let L p , p ( ℳ ) = ( L ∞ ( ℳ ) , L 1 ( ℳ ) ) 1 p , p be equipped with the operator space structure via real interpolation as defined by the second named author (J. Funct. Anal. 139 (1996), 500-539). We show that L p , p ( ℳ ) = L p ( ℳ ) completely isomorphically if and only if ℳ is finite dimensional. This solves in the negative the three problems left open in the quoted work of the second author. We also show that for 1 < p < ∞ and 1 ≤ q ≤ ∞ with p ≠ q ( L ∞ ( ℳ ; ℓ q ) , L 1 ( ℳ ; ℓ q ) ) 1 p , p = L p ( ℳ ; ℓ q ) with equivalent norms, i.e., at the Banach space level if and only if ℳ is isomorphic, as a Banach space, to a commutative von Neumann algebra. Our third result concerns the following inequality: ‖ ( ∑ i x i q ) 1 q ‖ L p ( ℳ ) ≤ ‖ ( ∑ i x i r ) 1 r ‖ L p ( ℳ ) for any finite sequence ( x i ) ⊂ L p + ( ℳ ) , where 0 < r < q < ∞ and 0 < p ≤ ∞. If ℳ is not isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality holds if and only if p ≥ r .
doi_str_mv 10.1007/s10473-021-0622-2
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03541798v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03541798v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2372-a0dbe60a28810ab69247f98bce331ddad65047a91291c264c64fafa4174a0f293</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwAbj1yiFgu23aHqcJ2KSKSfw5R16bwKbSVElB4tuTqRNHTras9-znnxDXCLcIUNwFhKxIJRBKUESSTsQM84JkBWVxKmZAeewV0Lm4CGEPgIpUNhP45EYTEtcnz4a7ZN2Pxg-u43EXR84mm8F4Hp1P6kG-DNyYcCnOLHfBXB3rXLw93L8uV7LePK6Xi1o2lMa7DO3WKGAqSwTeqoqywlbltjFpim3LrcpjYq6QKmxilEZlli1nWGQMlqp0Lm6mvR_c6cHvPtn_aMc7vVrU-jCDNI_qqvzGqMVJ23gXgjf2z4CgD3z0xEdHPvrAR1P00OQJUdu_G6_37sv38aV_TL_ZEWWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Notes on Real Interpolation of Operator Lp-Spaces</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Junge, Marius ; Xu, Quanhua</creator><creatorcontrib>Junge, Marius ; Xu, Quanhua</creatorcontrib><description><![CDATA[Let ℳ be a semifinite von Neumann algebra. We equip the associated non-commutative L p -spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 < p < ∞ let L p , p ( ℳ ) = ( L ∞ ( ℳ ) , L 1 ( ℳ ) ) 1 p , p be equipped with the operator space structure via real interpolation as defined by the second named author (J. Funct. Anal. 139 (1996), 500-539). We show that L p , p ( ℳ ) = L p ( ℳ ) completely isomorphically if and only if ℳ is finite dimensional. This solves in the negative the three problems left open in the quoted work of the second author. We also show that for 1 < p < ∞ and 1 ≤ q ≤ ∞ with p ≠ q ( L ∞ ( ℳ ; ℓ q ) , L 1 ( ℳ ; ℓ q ) ) 1 p , p = L p ( ℳ ; ℓ q ) with equivalent norms, i.e., at the Banach space level if and only if ℳ is isomorphic, as a Banach space, to a commutative von Neumann algebra. Our third result concerns the following inequality: ‖ ( ∑ i x i q ) 1 q ‖ L p ( ℳ ) ≤ ‖ ( ∑ i x i r ) 1 r ‖ L p ( ℳ ) for any finite sequence ( x i ) ⊂ L p + ( ℳ ) , where 0 < r < q < ∞ and 0 < p ≤ ∞. If ℳ is not isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality holds if and only if p ≥ r .]]></description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1007/s10473-021-0622-2</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Analysis ; Functional Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica scientia, 2021-11, Vol.41 (6), p.2173-2182</ispartof><rights>Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2372-a0dbe60a28810ab69247f98bce331ddad65047a91291c264c64fafa4174a0f293</citedby><cites>FETCH-LOGICAL-c2372-a0dbe60a28810ab69247f98bce331ddad65047a91291c264c64fafa4174a0f293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10473-021-0622-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10473-021-0622-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03541798$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Junge, Marius</creatorcontrib><creatorcontrib>Xu, Quanhua</creatorcontrib><title>Notes on Real Interpolation of Operator Lp-Spaces</title><title>Acta mathematica scientia</title><addtitle>Acta Math Sci</addtitle><description><![CDATA[Let ℳ be a semifinite von Neumann algebra. We equip the associated non-commutative L p -spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 < p < ∞ let L p , p ( ℳ ) = ( L ∞ ( ℳ ) , L 1 ( ℳ ) ) 1 p , p be equipped with the operator space structure via real interpolation as defined by the second named author (J. Funct. Anal. 139 (1996), 500-539). We show that L p , p ( ℳ ) = L p ( ℳ ) completely isomorphically if and only if ℳ is finite dimensional. This solves in the negative the three problems left open in the quoted work of the second author. We also show that for 1 < p < ∞ and 1 ≤ q ≤ ∞ with p ≠ q ( L ∞ ( ℳ ; ℓ q ) , L 1 ( ℳ ; ℓ q ) ) 1 p , p = L p ( ℳ ; ℓ q ) with equivalent norms, i.e., at the Banach space level if and only if ℳ is isomorphic, as a Banach space, to a commutative von Neumann algebra. Our third result concerns the following inequality: ‖ ( ∑ i x i q ) 1 q ‖ L p ( ℳ ) ≤ ‖ ( ∑ i x i r ) 1 r ‖ L p ( ℳ ) for any finite sequence ( x i ) ⊂ L p + ( ℳ ) , where 0 < r < q < ∞ and 0 < p ≤ ∞. If ℳ is not isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality holds if and only if p ≥ r .]]></description><subject>Analysis</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwAbj1yiFgu23aHqcJ2KSKSfw5R16bwKbSVElB4tuTqRNHTras9-znnxDXCLcIUNwFhKxIJRBKUESSTsQM84JkBWVxKmZAeewV0Lm4CGEPgIpUNhP45EYTEtcnz4a7ZN2Pxg-u43EXR84mm8F4Hp1P6kG-DNyYcCnOLHfBXB3rXLw93L8uV7LePK6Xi1o2lMa7DO3WKGAqSwTeqoqywlbltjFpim3LrcpjYq6QKmxilEZlli1nWGQMlqp0Lm6mvR_c6cHvPtn_aMc7vVrU-jCDNI_qqvzGqMVJ23gXgjf2z4CgD3z0xEdHPvrAR1P00OQJUdu_G6_37sv38aV_TL_ZEWWo</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Junge, Marius</creator><creator>Xu, Quanhua</creator><general>Springer Singapore</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20211101</creationdate><title>Notes on Real Interpolation of Operator Lp-Spaces</title><author>Junge, Marius ; Xu, Quanhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2372-a0dbe60a28810ab69247f98bce331ddad65047a91291c264c64fafa4174a0f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Junge, Marius</creatorcontrib><creatorcontrib>Xu, Quanhua</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Junge, Marius</au><au>Xu, Quanhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notes on Real Interpolation of Operator Lp-Spaces</atitle><jtitle>Acta mathematica scientia</jtitle><stitle>Acta Math Sci</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>41</volume><issue>6</issue><spage>2173</spage><epage>2182</epage><pages>2173-2182</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract><![CDATA[Let ℳ be a semifinite von Neumann algebra. We equip the associated non-commutative L p -spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 < p < ∞ let L p , p ( ℳ ) = ( L ∞ ( ℳ ) , L 1 ( ℳ ) ) 1 p , p be equipped with the operator space structure via real interpolation as defined by the second named author (J. Funct. Anal. 139 (1996), 500-539). We show that L p , p ( ℳ ) = L p ( ℳ ) completely isomorphically if and only if ℳ is finite dimensional. This solves in the negative the three problems left open in the quoted work of the second author. We also show that for 1 < p < ∞ and 1 ≤ q ≤ ∞ with p ≠ q ( L ∞ ( ℳ ; ℓ q ) , L 1 ( ℳ ; ℓ q ) ) 1 p , p = L p ( ℳ ; ℓ q ) with equivalent norms, i.e., at the Banach space level if and only if ℳ is isomorphic, as a Banach space, to a commutative von Neumann algebra. Our third result concerns the following inequality: ‖ ( ∑ i x i q ) 1 q ‖ L p ( ℳ ) ≤ ‖ ( ∑ i x i r ) 1 r ‖ L p ( ℳ ) for any finite sequence ( x i ) ⊂ L p + ( ℳ ) , where 0 < r < q < ∞ and 0 < p ≤ ∞. If ℳ is not isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality holds if and only if p ≥ r .]]></abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s10473-021-0622-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2021-11, Vol.41 (6), p.2173-2182
issn 0252-9602
1572-9087
language eng
recordid cdi_hal_primary_oai_HAL_hal_03541798v1
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Analysis
Functional Analysis
Mathematics
Mathematics and Statistics
title Notes on Real Interpolation of Operator Lp-Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notes%20on%20Real%20Interpolation%20of%20Operator%20Lp-Spaces&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Junge,%20Marius&rft.date=2021-11-01&rft.volume=41&rft.issue=6&rft.spage=2173&rft.epage=2182&rft.pages=2173-2182&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1007/s10473-021-0622-2&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03541798v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true