Notes on Real Interpolation of Operator Lp-Spaces
Let ℳ be a semifinite von Neumann algebra. We equip the associated non-commutative L p -spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 < p < ∞ let L p , p ( ℳ ) = ( L ∞ ( ℳ ) , L 1 ( ℳ ) ) 1 p , p be equipped with the...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2021-11, Vol.41 (6), p.2173-2182 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
ℳ
be a semifinite von Neumann algebra. We equip the associated non-commutative
L
p
-spaces with their natural operator space structure introduced by Pisier via complex interpolation. On the other hand, for 1 <
p
< ∞ let
L
p
,
p
(
ℳ
)
=
(
L
∞
(
ℳ
)
,
L
1
(
ℳ
)
)
1
p
,
p
be equipped with the operator space structure via real interpolation as defined by the second named author (J. Funct. Anal. 139 (1996), 500-539). We show that
L
p
,
p
(
ℳ
)
=
L
p
(
ℳ
)
completely isomorphically if and only if
ℳ
is finite dimensional. This solves in the negative the three problems left open in the quoted work of the second author.
We also show that for 1 <
p
< ∞ and 1 ≤
q
≤ ∞ with
p
≠
q
(
L
∞
(
ℳ
;
ℓ
q
)
,
L
1
(
ℳ
;
ℓ
q
)
)
1
p
,
p
=
L
p
(
ℳ
;
ℓ
q
)
with equivalent norms, i.e., at the Banach space level if and only if
ℳ
is isomorphic, as a Banach space, to a commutative von Neumann algebra.
Our third result concerns the following inequality:
‖
(
∑
i
x
i
q
)
1
q
‖
L
p
(
ℳ
)
≤
‖
(
∑
i
x
i
r
)
1
r
‖
L
p
(
ℳ
)
for any finite sequence
(
x
i
)
⊂
L
p
+
(
ℳ
)
, where 0 <
r
<
q
< ∞ and 0 <
p
≤ ∞. If
ℳ
is not isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality holds if and only if
p
≥
r
. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1007/s10473-021-0622-2 |