Origin of stellar prolate rotation in a cosmologically simulated faint dwarf galaxy
ABSTRACT Stellar prolate rotation in dwarf galaxies is rather uncommon, with only two known galaxies in the Local Group showing such feature (Phoenix and And II). Cosmological simulations show that in massive early-type galaxies prolate rotation likely arises from major mergers. However, the origin...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society. Letters 2021-07, Vol.505 (1), p.L100-L105 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Stellar prolate rotation in dwarf galaxies is rather uncommon, with only two known galaxies in the Local Group showing such feature (Phoenix and And II). Cosmological simulations show that in massive early-type galaxies prolate rotation likely arises from major mergers. However, the origin of such kinematics in the dwarf galaxies regime has only been explored using idealized simulations. Here, we made use of hydrodynamical cosmological simulations of dwarfs galaxies with stellar mass between 3 × 105 and 5 × 108 M⊙ to explore the formation of prolate rotators. Out of 27 dwarfs, only one system showed clear rotation around the major axis, whose culprit is a major merger at $z$ = 1.64, which caused the transition from an oblate to a prolate configuration. Interestingly, this galaxy displays a steep metallicity gradient, reminiscent of the one measured in Phoenix and And II: this is the outcome of the merger event that dynamically heats old, metal-poor stars, and of the centrally concentrated residual star formation. Major mergers in dwarf galaxies offer a viable explanation for the formation of such peculiar systems, characterized by steep metallicity gradients and prolate rotation. |
---|---|
ISSN: | 1745-3925 1745-3933 1745-3933 |
DOI: | 10.1093/mnrasl/slab059 |