TRIDENDRIFORM ALGEBRAS ON HYPERGRAPH POLYTOPES

We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the shuffle product on the faces of associahedra and permutohedra, to other families of nestohedra, including simplices, hypercubes and yet other less known families. We also extend the shuffle product to ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebraic combinatorics 2024
Hauptverfasser: Curien, Pierre-Louis, Delcroix-Oger, Bérénice, Obradović, Jovana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the works of Loday-Ronco and Burgunder-Ronco on the tridendriform decomposition of the shuffle product on the faces of associahedra and permutohedra, to other families of nestohedra, including simplices, hypercubes and yet other less known families. We also extend the shuffle product to take more than two arguments, and define accordingly a new algebraic structure, that we call polydendriform, from which the original tridendriform equations can be crisply synthesised.
ISSN:2589-5486