Eyring–Kramers law for Fokker–Planck type differential operators

We consider Fokker–Planck type differential operators associated with general Langevin processes admitting a Gibbs stationary distribution. Under assumptions ensuring suitable resolvent estimates, we prove Eyring–Kramers formulas for the bottom of the spectrum of these operators in the low temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2024-06
Hauptverfasser: Bony, Jean-François, Le Peutrec, Dorian, Michel, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Fokker–Planck type differential operators associated with general Langevin processes admitting a Gibbs stationary distribution. Under assumptions ensuring suitable resolvent estimates, we prove Eyring–Kramers formulas for the bottom of the spectrum of these operators in the low temperature regime. Our approach is based on the construction of sharp Gaussian quasimodes and avoids supersymmetry or PT-symmetry assumptions.
ISSN:1435-9855
1435-9863
DOI:10.4171/jems/1461