Eyring–Kramers law for Fokker–Planck type differential operators
We consider Fokker–Planck type differential operators associated with general Langevin processes admitting a Gibbs stationary distribution. Under assumptions ensuring suitable resolvent estimates, we prove Eyring–Kramers formulas for the bottom of the spectrum of these operators in the low temperatu...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2024-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider Fokker–Planck type differential operators associated with general Langevin processes admitting a Gibbs stationary distribution. Under assumptions ensuring suitable resolvent estimates, we prove Eyring–Kramers formulas for the bottom of the spectrum of these operators in the low temperature regime. Our approach is based on the construction of sharp Gaussian quasimodes and avoids supersymmetry or PT-symmetry assumptions. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/jems/1461 |