Tempered stable processes with time-varying exponential tails
In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility te...
Gespeichert in:
Veröffentlicht in: | Quantitative finance 2022-03, Vol.22 (3), p.541-561 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 561 |
---|---|
container_issue | 3 |
container_start_page | 541 |
container_title | Quantitative finance |
container_volume | 22 |
creator | Kim, Young Shin Roh, Kum-Hwan Douady, Raphael |
description | In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility and empirically indicates stochastic skewness and stochastic kurtosis in the S&P 500 index return data. We present a Monte-Carlo simulation technique for parameter calibration of the model for S&P 500 option prices and show that a stochastic exponential tail improves the calibration performance. |
doi_str_mv | 10.1080/14697688.2021.1962958 |
format | Article |
fullrecord | <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03512709v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645374050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-5e5223778ff7d5b507f061bb0e959a186ed1a8d7b8c8cb8017f098da1c0096de3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxYMoWKsfQQh48pA6m3T_HQRLUSsUvNTzskkmdkuarbtpa7-9G1LrzdMMs7838_ZF0S2BEQEBD2TMJGdCjFJIyYhIlkoqzqJBN084k-z81AtxGV15vwIgFEAOoscFrjfosIx9q_Ma442zBXqPPt6bdhm3Zo3JTruDaT5j_N7YBpvW6Dputan9dXRR6drjzbEOo4-X58V0lszfX9-mk3lSUJBtQpGmaca5qCpe0pwCr4CRPAeUVGoiGJZEi5LnohBFLoCEdylKTYrgkZWYDaP7fu9S12rjzDoYUlYbNZvMVTeDjJKUg9yRwN71bPjJ1xZ9q1Z265pgT6VsTDM-BgqBoj1VOOu9w-q0loDqUlW_qaouVXVMNejiXoeFbYz_U3HJSRagNCBPPWKayrq13ltXl6rVh9q6yummCLLs_ys_YJ-HrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645374050</pqid></control><display><type>article</type><title>Tempered stable processes with time-varying exponential tails</title><source>Business Source Complete</source><source>Taylor & Francis:Master (3349 titles)</source><creator>Kim, Young Shin ; Roh, Kum-Hwan ; Douady, Raphael</creator><creatorcontrib>Kim, Young Shin ; Roh, Kum-Hwan ; Douady, Raphael</creatorcontrib><description>In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility and empirically indicates stochastic skewness and stochastic kurtosis in the S&P 500 index return data. We present a Monte-Carlo simulation technique for parameter calibration of the model for S&P 500 option prices and show that a stochastic exponential tail improves the calibration performance.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2021.1962958</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Applications ; Computational Finance ; General Finance ; Lévy process ; Normal tempered stable distribution ; Option pricing ; Portfolio Management ; Pricing of Securities ; Quantitative Finance ; Risk Management ; Securities prices ; Statistical Finance ; Statistics ; Stochastic exponential tail ; Volatility ; Volatility of volatility</subject><ispartof>Quantitative finance, 2022-03, Vol.22 (3), p.541-561</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor & Francis Group</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-5e5223778ff7d5b507f061bb0e959a186ed1a8d7b8c8cb8017f098da1c0096de3</citedby><cites>FETCH-LOGICAL-c509t-5e5223778ff7d5b507f061bb0e959a186ed1a8d7b8c8cb8017f098da1c0096de3</cites><orcidid>0000-0003-4931-1806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697688.2021.1962958$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697688.2021.1962958$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,59645,60434</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03512709$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Young Shin</creatorcontrib><creatorcontrib>Roh, Kum-Hwan</creatorcontrib><creatorcontrib>Douady, Raphael</creatorcontrib><title>Tempered stable processes with time-varying exponential tails</title><title>Quantitative finance</title><description>In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility and empirically indicates stochastic skewness and stochastic kurtosis in the S&P 500 index return data. We present a Monte-Carlo simulation technique for parameter calibration of the model for S&P 500 option prices and show that a stochastic exponential tail improves the calibration performance.</description><subject>Applications</subject><subject>Computational Finance</subject><subject>General Finance</subject><subject>Lévy process</subject><subject>Normal tempered stable distribution</subject><subject>Option pricing</subject><subject>Portfolio Management</subject><subject>Pricing of Securities</subject><subject>Quantitative Finance</subject><subject>Risk Management</subject><subject>Securities prices</subject><subject>Statistical Finance</subject><subject>Statistics</subject><subject>Stochastic exponential tail</subject><subject>Volatility</subject><subject>Volatility of volatility</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxYMoWKsfQQh48pA6m3T_HQRLUSsUvNTzskkmdkuarbtpa7-9G1LrzdMMs7838_ZF0S2BEQEBD2TMJGdCjFJIyYhIlkoqzqJBN084k-z81AtxGV15vwIgFEAOoscFrjfosIx9q_Ma442zBXqPPt6bdhm3Zo3JTruDaT5j_N7YBpvW6Dputan9dXRR6drjzbEOo4-X58V0lszfX9-mk3lSUJBtQpGmaca5qCpe0pwCr4CRPAeUVGoiGJZEi5LnohBFLoCEdylKTYrgkZWYDaP7fu9S12rjzDoYUlYbNZvMVTeDjJKUg9yRwN71bPjJ1xZ9q1Z265pgT6VsTDM-BgqBoj1VOOu9w-q0loDqUlW_qaouVXVMNejiXoeFbYz_U3HJSRagNCBPPWKayrq13ltXl6rVh9q6yummCLLs_ys_YJ-HrA</recordid><startdate>20220304</startdate><enddate>20220304</enddate><creator>Kim, Young Shin</creator><creator>Roh, Kum-Hwan</creator><creator>Douady, Raphael</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis (Routledge)</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4931-1806</orcidid></search><sort><creationdate>20220304</creationdate><title>Tempered stable processes with time-varying exponential tails</title><author>Kim, Young Shin ; Roh, Kum-Hwan ; Douady, Raphael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-5e5223778ff7d5b507f061bb0e959a186ed1a8d7b8c8cb8017f098da1c0096de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications</topic><topic>Computational Finance</topic><topic>General Finance</topic><topic>Lévy process</topic><topic>Normal tempered stable distribution</topic><topic>Option pricing</topic><topic>Portfolio Management</topic><topic>Pricing of Securities</topic><topic>Quantitative Finance</topic><topic>Risk Management</topic><topic>Securities prices</topic><topic>Statistical Finance</topic><topic>Statistics</topic><topic>Stochastic exponential tail</topic><topic>Volatility</topic><topic>Volatility of volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Young Shin</creatorcontrib><creatorcontrib>Roh, Kum-Hwan</creatorcontrib><creatorcontrib>Douady, Raphael</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Young Shin</au><au>Roh, Kum-Hwan</au><au>Douady, Raphael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tempered stable processes with time-varying exponential tails</atitle><jtitle>Quantitative finance</jtitle><date>2022-03-04</date><risdate>2022</risdate><volume>22</volume><issue>3</issue><spage>541</spage><epage>561</epage><pages>541-561</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility and empirically indicates stochastic skewness and stochastic kurtosis in the S&P 500 index return data. We present a Monte-Carlo simulation technique for parameter calibration of the model for S&P 500 option prices and show that a stochastic exponential tail improves the calibration performance.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2021.1962958</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4931-1806</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-7688 |
ispartof | Quantitative finance, 2022-03, Vol.22 (3), p.541-561 |
issn | 1469-7688 1469-7696 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03512709v1 |
source | Business Source Complete; Taylor & Francis:Master (3349 titles) |
subjects | Applications Computational Finance General Finance Lévy process Normal tempered stable distribution Option pricing Portfolio Management Pricing of Securities Quantitative Finance Risk Management Securities prices Statistical Finance Statistics Stochastic exponential tail Volatility Volatility of volatility |
title | Tempered stable processes with time-varying exponential tails |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tempered%20stable%20processes%20with%20time-varying%20exponential%20tails&rft.jtitle=Quantitative%20finance&rft.au=Kim,%20Young%20Shin&rft.date=2022-03-04&rft.volume=22&rft.issue=3&rft.spage=541&rft.epage=561&rft.pages=541-561&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2021.1962958&rft_dat=%3Cproquest_econi%3E2645374050%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645374050&rft_id=info:pmid/&rfr_iscdi=true |