Tempered stable processes with time-varying exponential tails

In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2022-03, Vol.22 (3), p.541-561
Hauptverfasser: Kim, Young Shin, Roh, Kum-Hwan, Douady, Raphael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 561
container_issue 3
container_start_page 541
container_title Quantitative finance
container_volume 22
creator Kim, Young Shin
Roh, Kum-Hwan
Douady, Raphael
description In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility and empirically indicates stochastic skewness and stochastic kurtosis in the S&P 500 index return data. We present a Monte-Carlo simulation technique for parameter calibration of the model for S&P 500 option prices and show that a stochastic exponential tail improves the calibration performance.
doi_str_mv 10.1080/14697688.2021.1962958
format Article
fullrecord <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03512709v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2645374050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-5e5223778ff7d5b507f061bb0e959a186ed1a8d7b8c8cb8017f098da1c0096de3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxYMoWKsfQQh48pA6m3T_HQRLUSsUvNTzskkmdkuarbtpa7-9G1LrzdMMs7838_ZF0S2BEQEBD2TMJGdCjFJIyYhIlkoqzqJBN084k-z81AtxGV15vwIgFEAOoscFrjfosIx9q_Ma442zBXqPPt6bdhm3Zo3JTruDaT5j_N7YBpvW6Dputan9dXRR6drjzbEOo4-X58V0lszfX9-mk3lSUJBtQpGmaca5qCpe0pwCr4CRPAeUVGoiGJZEi5LnohBFLoCEdylKTYrgkZWYDaP7fu9S12rjzDoYUlYbNZvMVTeDjJKUg9yRwN71bPjJ1xZ9q1Z265pgT6VsTDM-BgqBoj1VOOu9w-q0loDqUlW_qaouVXVMNejiXoeFbYz_U3HJSRagNCBPPWKayrq13ltXl6rVh9q6yummCLLs_ys_YJ-HrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645374050</pqid></control><display><type>article</type><title>Tempered stable processes with time-varying exponential tails</title><source>Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Kim, Young Shin ; Roh, Kum-Hwan ; Douady, Raphael</creator><creatorcontrib>Kim, Young Shin ; Roh, Kum-Hwan ; Douady, Raphael</creatorcontrib><description>In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility and empirically indicates stochastic skewness and stochastic kurtosis in the S&amp;P 500 index return data. We present a Monte-Carlo simulation technique for parameter calibration of the model for S&amp;P 500 option prices and show that a stochastic exponential tail improves the calibration performance.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2021.1962958</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Applications ; Computational Finance ; General Finance ; Lévy process ; Normal tempered stable distribution ; Option pricing ; Portfolio Management ; Pricing of Securities ; Quantitative Finance ; Risk Management ; Securities prices ; Statistical Finance ; Statistics ; Stochastic exponential tail ; Volatility ; Volatility of volatility</subject><ispartof>Quantitative finance, 2022-03, Vol.22 (3), p.541-561</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-5e5223778ff7d5b507f061bb0e959a186ed1a8d7b8c8cb8017f098da1c0096de3</citedby><cites>FETCH-LOGICAL-c509t-5e5223778ff7d5b507f061bb0e959a186ed1a8d7b8c8cb8017f098da1c0096de3</cites><orcidid>0000-0003-4931-1806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697688.2021.1962958$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697688.2021.1962958$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,59645,60434</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03512709$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Young Shin</creatorcontrib><creatorcontrib>Roh, Kum-Hwan</creatorcontrib><creatorcontrib>Douady, Raphael</creatorcontrib><title>Tempered stable processes with time-varying exponential tails</title><title>Quantitative finance</title><description>In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility and empirically indicates stochastic skewness and stochastic kurtosis in the S&amp;P 500 index return data. We present a Monte-Carlo simulation technique for parameter calibration of the model for S&amp;P 500 option prices and show that a stochastic exponential tail improves the calibration performance.</description><subject>Applications</subject><subject>Computational Finance</subject><subject>General Finance</subject><subject>Lévy process</subject><subject>Normal tempered stable distribution</subject><subject>Option pricing</subject><subject>Portfolio Management</subject><subject>Pricing of Securities</subject><subject>Quantitative Finance</subject><subject>Risk Management</subject><subject>Securities prices</subject><subject>Statistical Finance</subject><subject>Statistics</subject><subject>Stochastic exponential tail</subject><subject>Volatility</subject><subject>Volatility of volatility</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxYMoWKsfQQh48pA6m3T_HQRLUSsUvNTzskkmdkuarbtpa7-9G1LrzdMMs7838_ZF0S2BEQEBD2TMJGdCjFJIyYhIlkoqzqJBN084k-z81AtxGV15vwIgFEAOoscFrjfosIx9q_Ma442zBXqPPt6bdhm3Zo3JTruDaT5j_N7YBpvW6Dputan9dXRR6drjzbEOo4-X58V0lszfX9-mk3lSUJBtQpGmaca5qCpe0pwCr4CRPAeUVGoiGJZEi5LnohBFLoCEdylKTYrgkZWYDaP7fu9S12rjzDoYUlYbNZvMVTeDjJKUg9yRwN71bPjJ1xZ9q1Z265pgT6VsTDM-BgqBoj1VOOu9w-q0loDqUlW_qaouVXVMNejiXoeFbYz_U3HJSRagNCBPPWKayrq13ltXl6rVh9q6yummCLLs_ys_YJ-HrA</recordid><startdate>20220304</startdate><enddate>20220304</enddate><creator>Kim, Young Shin</creator><creator>Roh, Kum-Hwan</creator><creator>Douady, Raphael</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis (Routledge)</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4931-1806</orcidid></search><sort><creationdate>20220304</creationdate><title>Tempered stable processes with time-varying exponential tails</title><author>Kim, Young Shin ; Roh, Kum-Hwan ; Douady, Raphael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-5e5223778ff7d5b507f061bb0e959a186ed1a8d7b8c8cb8017f098da1c0096de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications</topic><topic>Computational Finance</topic><topic>General Finance</topic><topic>Lévy process</topic><topic>Normal tempered stable distribution</topic><topic>Option pricing</topic><topic>Portfolio Management</topic><topic>Pricing of Securities</topic><topic>Quantitative Finance</topic><topic>Risk Management</topic><topic>Securities prices</topic><topic>Statistical Finance</topic><topic>Statistics</topic><topic>Stochastic exponential tail</topic><topic>Volatility</topic><topic>Volatility of volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Young Shin</creatorcontrib><creatorcontrib>Roh, Kum-Hwan</creatorcontrib><creatorcontrib>Douady, Raphael</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Young Shin</au><au>Roh, Kum-Hwan</au><au>Douady, Raphael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tempered stable processes with time-varying exponential tails</atitle><jtitle>Quantitative finance</jtitle><date>2022-03-04</date><risdate>2022</risdate><volume>22</volume><issue>3</issue><spage>541</spage><epage>561</epage><pages>541-561</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility and empirically indicates stochastic skewness and stochastic kurtosis in the S&amp;P 500 index return data. We present a Monte-Carlo simulation technique for parameter calibration of the model for S&amp;P 500 option prices and show that a stochastic exponential tail improves the calibration performance.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2021.1962958</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4931-1806</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2022-03, Vol.22 (3), p.541-561
issn 1469-7688
1469-7696
language eng
recordid cdi_hal_primary_oai_HAL_hal_03512709v1
source Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects Applications
Computational Finance
General Finance
Lévy process
Normal tempered stable distribution
Option pricing
Portfolio Management
Pricing of Securities
Quantitative Finance
Risk Management
Securities prices
Statistical Finance
Statistics
Stochastic exponential tail
Volatility
Volatility of volatility
title Tempered stable processes with time-varying exponential tails
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tempered%20stable%20processes%20with%20time-varying%20exponential%20tails&rft.jtitle=Quantitative%20finance&rft.au=Kim,%20Young%20Shin&rft.date=2022-03-04&rft.volume=22&rft.issue=3&rft.spage=541&rft.epage=561&rft.pages=541-561&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2021.1962958&rft_dat=%3Cproquest_econi%3E2645374050%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645374050&rft_id=info:pmid/&rfr_iscdi=true