Tempered stable processes with time-varying exponential tails
In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility te...
Gespeichert in:
Veröffentlicht in: | Quantitative finance 2022-03, Vol.22 (3), p.541-561 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility and empirically indicates stochastic skewness and stochastic kurtosis in the S&P 500 index return data. We present a Monte-Carlo simulation technique for parameter calibration of the model for S&P 500 option prices and show that a stochastic exponential tail improves the calibration performance. |
---|---|
ISSN: | 1469-7688 1469-7696 |
DOI: | 10.1080/14697688.2021.1962958 |