Tempered stable processes with time-varying exponential tails

In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2022-03, Vol.22 (3), p.541-561
Hauptverfasser: Kim, Young Shin, Roh, Kum-Hwan, Douady, Raphael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a new time series model with a stochastic exponential tail. This model is constructed based on the Normal Tempered Stable distribution with a time-varying parameter. It captures the stochastic exponential tail, which generates the volatility smile effect and volatility term structure in option pricing. Moreover, the model describes the time-varying volatility of volatility and empirically indicates stochastic skewness and stochastic kurtosis in the S&P 500 index return data. We present a Monte-Carlo simulation technique for parameter calibration of the model for S&P 500 option prices and show that a stochastic exponential tail improves the calibration performance.
ISSN:1469-7688
1469-7696
DOI:10.1080/14697688.2021.1962958