Kalman Filtering and Expectation Maximization for Multitemporal Spectral Unmixing

The recent evolution of hyperspectral imaging technology and the proliferation of new emerging applications press for the processing of multiple temporal hyperspectral images. In this work, we propose a novel spectral unmixing (SU) strategy using physically motivated parametric endmember (EME) repre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Borsoi, Ricardo A., Imbiriba, Tales, Closas, Pau, Bermudez, Jose Carlos M., Richard, Cedric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent evolution of hyperspectral imaging technology and the proliferation of new emerging applications press for the processing of multiple temporal hyperspectral images. In this work, we propose a novel spectral unmixing (SU) strategy using physically motivated parametric endmember (EME) representations to account for temporal spectral variability. By representing the multitemporal mixing process using a state-space formulation, we are able to exploit the Bayesian filtering machinery to estimate the EME variability coefficients. Moreover, by assuming that the temporal variability of the abundances is small over short intervals, an efficient implementation of the expectation-maximization (EM) algorithm is employed to estimate the abundances and the other model parameters. Simulation results indicate that the proposed strategy outperforms state-of-the-art multi-temporal SU (MTSU) algorithms.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2020.3025781