Classification of solutions of an equation related to a conformal log Sobolev inequality
We classify all finite energy solutions of an equation which arises as the Euler–Lagrange equation of a conformally invariant logarithmic Sobolev inequality on the sphere due to Beckner. Our proof uses an extension of the method of moving spheres from Rn to Sn and a classification result of Li and Z...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2020-12, Vol.375, p.107395, Article 107395 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We classify all finite energy solutions of an equation which arises as the Euler–Lagrange equation of a conformally invariant logarithmic Sobolev inequality on the sphere due to Beckner. Our proof uses an extension of the method of moving spheres from Rn to Sn and a classification result of Li and Zhu. Along the way we prove a small volume maximum principle and a strong maximum principle for the underlying operator which is closely related to the logarithmic Laplacian. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2020.107395 |