Classification of solutions of an equation related to a conformal log Sobolev inequality

We classify all finite energy solutions of an equation which arises as the Euler–Lagrange equation of a conformally invariant logarithmic Sobolev inequality on the sphere due to Beckner. Our proof uses an extension of the method of moving spheres from Rn to Sn and a classification result of Li and Z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2020-12, Vol.375, p.107395, Article 107395
Hauptverfasser: Frank, Rupert L., König, Tobias, Tang, Hanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We classify all finite energy solutions of an equation which arises as the Euler–Lagrange equation of a conformally invariant logarithmic Sobolev inequality on the sphere due to Beckner. Our proof uses an extension of the method of moving spheres from Rn to Sn and a classification result of Li and Zhu. Along the way we prove a small volume maximum principle and a strong maximum principle for the underlying operator which is closely related to the logarithmic Laplacian.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2020.107395