Energy asymptotics in the three-dimensional Brezis–Nirenberg problem
For a bounded open set Ω ⊂ R 3 we consider the minimization problem S ( a + ϵ V ) = inf 0 ≢ u ∈ H 0 1 ( Ω ) ∫ Ω ( | ∇ u | 2 + ( a + ϵ V ) | u | 2 ) d x ( ∫ Ω u 6 d x ) 1 / 3 involving the critical Sobolev exponent. The function a is assumed to be critical in the sense of Hebey and Vaugon. Under cert...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2021-04, Vol.60 (2), Article 58 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a bounded open set
Ω
⊂
R
3
we consider the minimization problem
S
(
a
+
ϵ
V
)
=
inf
0
≢
u
∈
H
0
1
(
Ω
)
∫
Ω
(
|
∇
u
|
2
+
(
a
+
ϵ
V
)
|
u
|
2
)
d
x
(
∫
Ω
u
6
d
x
)
1
/
3
involving the critical Sobolev exponent. The function
a
is assumed to be critical in the sense of Hebey and Vaugon. Under certain assumptions on
a
and
V
we compute the asymptotics of
S
(
a
+
ϵ
V
)
-
S
as
ϵ
→
0
+
, where
S
is the Sobolev constant. (Almost) minimizers concentrate at a point in the zero set of the Robin function corresponding to
a
and we determine the location of the concentration point within that set. We also show that our assumptions are almost necessary to have
S
(
a
+
ϵ
V
)
<
S
for all sufficiently small
ϵ
>
0
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-021-01929-3 |