A Novel Mode of Asymmetric Division Identifies the Fly Neuroglioblast 6-4T
Asymmetric cell divisions and segregation of fate determinants are crucial events in the generation of cell diversity. Fly neuroblasts, the precursors that self-reproduce and generate neurons, represent a clear example of asymmetrically dividing cells. Less is known about how neurons and glial cells...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2001-07, Vol.235 (1), p.74-85 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Asymmetric cell divisions and segregation of fate determinants are crucial events in the generation of cell diversity. Fly neuroblasts, the precursors that self-reproduce and generate neurons, represent a clear example of asymmetrically dividing cells. Less is known about how neurons and glial cells are generated by multipotent precursors. Flies provide the ideal model system to study this process. Indeed, neuroglioblasts (NGBs) can be specifically identified and have been shown to require the glide/gcm fate determinant to produce glial cells, which otherwise would become neurons. Here, we follow the division of a specific NGB (NGB6-4T), which produces a neuroblast (NB) and a glioblast (GB). We show that, to generate the glioblast, glide/gcm RNA becomes progressively unequally distributed during NGB division and preferentially segregates. Subsequently, a GB-specific factor is required to maintain glide/gcm expression. Both processes are necessary for gliogenesis, showing that the glial vs. neuronal fate choice is a two-step process. This feature, together with glide/gcm subcellular RNA distribution and the behavior of the NGB mitotic apparatus identify a novel type of division generating cell diversity. |
---|---|
ISSN: | 0012-1606 1095-564X |
DOI: | 10.1006/dbio.2001.0296 |