Oncolytic effects of Hitchner B1 strain of newcastle disease virus against cervical cancer cell proliferation is mediated by the increased expression of cytochrome C, autophagy and apoptotic pathways

Newcastle disease virus (NDV) is a potential oncolytic virus for the cancer treatment due to its ability to replicate in tumor cells. The aim of this study was to evaluate the in vitro anticancer properties of Hitchner B1 (HB1) strain of NDV on TC-1 cell line and underlying molecular mechanisms. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial pathogenesis 2020-10, Vol.147, p.104438-104438, Article 104438
Hauptverfasser: Mozaffari Nejad, Amir Sasan, Fotouhi, Fatemeh, Mehrbod, Parvaneh, Keshavarz, Mohsen, Alikhani, Mohammad Yousef, Ghaemi, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Newcastle disease virus (NDV) is a potential oncolytic virus for the cancer treatment due to its ability to replicate in tumor cells. The aim of this study was to evaluate the in vitro anticancer properties of Hitchner B1 (HB1) strain of NDV on TC-1 cell line and underlying molecular mechanisms. The cytolytic effects of oncolytic HB1 strain of NDV was determined by lactate dehydrogenase (LDH) release assay. Apoptosis, intracellular reactive oxygen species (ROS) levels, cleaved caspase-3 and autophagy were evaluated by flow cytometry. Cytochrome-C and survivin protein levels were distinguished by Enzyme-Linked Immunosorbent Assay (ELISA). Our results from LDH method showed that the viability of the TC-1 cell line following HB1 NDV infection was dose-dependent and decreased significantly with increasing the dose of HB1 NDV infection (MOIs: 5, 10, and 15). Other evaluations also revealed that HB1 strain of NDV potentially led to the ROS production, and apoptosis and autophagy induction in TC-1 cell line in a dose-dependent manner. The in vitro experiments also presented that NDV treatment significantly up-regulated the expression of cytochrome-C and down-regulated the expression of survivin, as detected by ELISA assay. Our results confirmed that the HB1 NDV could be introduced as a powerful candidate for the therapy of cervical cancer. However, further examinations are needed to explain the underlying mechanisms of the HB1 NDV against TC-1 cell line and cervical cancer. •Hitchner B1 (HB1) strain of NDV was investigated for the in vitro anticancer activity in the TC-1 cell line.•The apoptosis and autophagy were evaluated on different MOIs of oncolytic NDV in the TC-1 cell line.•NDV potentially led to the ROS production, apoptosis and autophagy induction in a dose-dependent manner by flow cytometry.•NDV up-regulated the expression of cytochrome-C and down-regulated the expression of survivin significantly.•Oncolytic HB1 NDV could be a potent candidate agent for the treatment of cervical cancer.
ISSN:0882-4010
1096-1208
DOI:10.1016/j.micpath.2020.104438