Toxicological appraisal of the chemical fractions of ambient fine (PM2.5-0.3) and quasi-ultrafine (PM0.3) particles in human bronchial epithelial BEAS-2B cells

New toxicological research is still urgently needed to improve the current knowledge about the induction of some underlying mechanisms of toxicity by the different chemical fractions of ambient particulate matter (PM). This in vitro study sought also to better evaluate and compare the respective tox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2020-08, Vol.263 (Pt A), p.114620, Article 114620
Hauptverfasser: Badran, Ghidaa, Verdin, Anthony, Grare, Céline, Abbas, Imane, Achour, Djamal, Ledoux, Frédéric, Roumie, Mohamad, Cazier, Fabrice, Courcot, Dominique, Lo Guidice, Jean-Marc, Garçon, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New toxicological research is still urgently needed to improve the current knowledge about the induction of some underlying mechanisms of toxicity by the different chemical fractions of ambient particulate matter (PM). This in vitro study sought also to better evaluate and compare the respective toxicities of fine particles (PM2.5-0.3) and their inorganic and organic chemical fractions, and the respective toxicities of the organic chemical fractions of PM2.5-0.3 and quasi-ultrafine particles (PM0.3). Human bronchial epithelial BEAS-2B cells were also exposed for 6–48 h to relatively low doses of PM2.5-0.3 and their organic extractable (OEM2.5-0.3) and non-extractable (NEM2.5-0.3) fractions, and the organic extractable fraction (OEM0.3) of PM0.3. We reported that not only PM2.5-0.3, but also, to a lesser extent, its inorganic chemical fraction, NEM2.5-0.3, and organic chemical fraction, OEM2.5-0.3, were able to significantly induce ROS overproduction and oxidative damage notwithstanding the early activation of NRF2 signaling pathway. Moreover, for any exposure, inflammatory and apoptotic events were noticed. Similar results were observed in BEAS-2B cells exposed to OEM0.3, rich of polycyclic aromatic hydrocarbons and their nitrated and oxygenated derivatives. In BEAS-2B cells exposed for 24 and 48 h to OEM2.5-0.3 and OEM0.3, to a higher extent, there was an alteration of the levels of some critical proteins even though crucial for the autophagy rather than a real reduction of autophagy. It is noteworthy that the toxicological effects were equal or mostly higher in BEAS-2B cells exposed for 6 and/or 24 h to PM2.5-0.3 from those exposed to NEM2.5-0.3 or OEM2.5-0.3, and in BEAS-2B cells exposed for 6 and/or mostly 24 h to OEM0.3 from those exposed to OEM2.5-0.3. Taken together, these results revealed the higher potentials for toxicity, closely linked to their respective physical and chemical characteristics, of PM2.5-0.3 vs NEM2.5-0.3 and/or OEM2.5-0.3, and OEM0.3 vs OEM2.5-0.3. [Display omitted] •Better knowledge of the respective roles of each chemical fraction from ambient PM.•Equal or higher harmful effects of PM2.5-0.3 vs NEM2.5-0.3, OEM2.5-0.3, and OEM0.3•Equal or higher harmful effects of OEM0.3 vs OEM2.5-0.3•New insights into the respective toxicity potentials of OEM2.5-0.3 and OEM0.3•Key implication of oxidative stress, inflammation, and regulated cell death. Inorganic and organic chemical fractions from ambient fine and ultrafine particles differenti
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2020.114620