Umbral calculus in Ore extensions
The aim of the paper is to show the existence of some ingredients for an umbral calculus on some Ore extensions, in a manner analogous to Rota's classical umbral calculus which deals with a univariate polynomial ring on a field of characteristic zero. For that, we introduce the notion of a quas...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2020-03, Vol.224 (3), p.958-986 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the paper is to show the existence of some ingredients for an umbral calculus on some Ore extensions, in a manner analogous to Rota's classical umbral calculus which deals with a univariate polynomial ring on a field of characteristic zero. For that, we introduce the notion of a quasi-derivation in order to specify Ore extensions on which building up this umbral calculus is possible. This allows in particular to define an action of the Ore extension on tensor products of modules. We develop also a Pincherle calculus for operators and we define a coalgebra structure on the Ore extension. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2019.06.017 |