Nutrient limitations, microbial food webs and 'biological C-pumps': suggested interactions in a P-limited Mediterranean
In light of evidence suggesting that both phytoplankton and bacteria in the Mediterranean Sea are limited by the availability of phosphorus rather than of nitrogen, and that most of the P in the photic zone during summer stratification exists as dissolved organic compounds (DOP), we address the ques...
Gespeichert in:
Veröffentlicht in: | Marine ecology. Progress series (Halstenbek) 1995, Vol.117 (1/3), p.299-306 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In light of evidence suggesting that both phytoplankton and bacteria in the Mediterranean Sea are limited by the availability of phosphorus rather than of nitrogen, and that most of the P in the photic zone during summer stratification exists as dissolved organic compounds (DOP), we address the question of how these observations may interact with the 'biological pump' transporting carbon to deep waters. From theoretical considerations, the C storage via sinking particles should function better in a P- than in an N-limited system. It is argued, however, that the microbial food web during summer stratification has a net accumulation of dissolved organic carbon (DOC) and DOP. The limited data available suggest a high DOC:DOP value which would make downwards transport of DOC with winter deep water formation a potentially effective mechanism in sequestration from the atmosphere. Part of the DOC accumulating in the photic zone appears to be readily biodegradable. This is in conflict with a simple model of phytoplankton-bacterial competition for phosphate since phytoplankton, as an inferior competitor, would be expected to be reduced in biomass until autochthonous production of organic C falls to a level where bacteria become C-limited. The conflict is resolved by including microzooplankton grazing as a controlling factor of bacterial biomass. |
---|---|
ISSN: | 0171-8630 1616-1599 |
DOI: | 10.3354/meps117299 |