Microstructure Investigation of Small-Section Nodular Iron Castings with Chunky Graphite
Parameters that affect chunky graphite formation in heavy-section castings have been studied in previous works which showed that inoculation and cerium addition both increase the tendency for this degenerate graphite. This suggested that laboratory study on chunky graphite formation could be perform...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2011-01, Vol.457, p.52-57 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parameters that affect chunky graphite formation in heavy-section castings have been studied in previous works which showed that inoculation and cerium addition both increase the tendency for this degenerate graphite. This suggested that laboratory study on chunky graphite formation could be performed on small castings by over-treating the melt. Though the role of silicon was not ascertained, it appeared of potential interest to also investigate its effect in relation with the carbon equivalent of the iron and the nucleation potential of the melt. Keel-blocks were thus cast using Ce or Ce-Mg treated melts, with increased silicon content (up to 4.0 wt.%) and inoculation rate as compared to usual practice. It was observed that chunky graphite systematically appeared in more or less extended areas centred on the upper part of the keel-blocks. The as-cast microstructure (graphite shape and distribution) has then been studied in relation to melt composition and additions (Ce treatment and inoculation) in both affected and non-affected areas. Finally, microanalysis of oxides and other minor phases showed them to be similar to those appearing in heavy-section castings. It may then be concluded that chunky graphite appears in light-section castings in the same way than in heavy-section castings when using over-treated melts. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.457.52 |