Electron Transport in Double-Barrier Semiconductor Heterostructures for Thermionic Cooling

We investigate electron transport in asymmetric double-barrier (Al, Ga)As/GaAs thermionic cooling heterostructures. Measurements of temperature-dependent current-voltage characteristics confirm that the dominant electron transport is a sequential process of resonant tunneling injection into and ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2021-12, Vol.16 (6), Article 064017
Hauptverfasser: Zhu, Xiangyu, Bescond, Marc, Onoue, Toshiki, Bastard, Gerald, Carosella, Francesca, Ferreira, Robson, Nagai, Naomi, Hirakawa, Kazuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate electron transport in asymmetric double-barrier (Al, Ga)As/GaAs thermionic cooling heterostructures. Measurements of temperature-dependent current-voltage characteristics confirm that the dominant electron transport is a sequential process of resonant tunneling injection into and thermionic emission from the quantum-well (QW) cooling layer. The thermal activation energy of the current is found to be strongly dependent on the bias voltage. Furthermore, instead of showing a simple thermal activation behavior, the current exhibits rather complicated temperature and voltage dependence, particularly when the thermionic emission barrier is low. To establish a quantitative understanding, we develop an intuitive analytical model for sequential electron transport that explicitly takes into account scattering effects in the thermionic emission process from the two-dimensional QW states to the three-dimensional above-barrier states. The observed temperature-dependent sequential current is well explained by the present theory.
ISSN:2331-7019
2331-7019
DOI:10.1103/PhysRevApplied.16.064017